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SUMMARY

A numerical difference scheme is described to simulate three-
dimensional, time-dependent, turbulent flows of incompressible
fluids at high Reynolds numbers in a platle channel and in con-
centric annular channels.1

Starting from the results of Deardorff, the Navier-Stokes
equations, averaged over grid volumes, are integrated. For a
description of the subgrid scale motion a novel model has been
developed which takes into account strongly inhomogeneous
turbulence and grid volumes of unequal side lengths. The pre-
mises used in the model are described and discussed.

Stability criteria are established for this method and for
similar difference schemes. For computation of the pressure
field the appropriate Poisson's equation is solved accurately,
except for rounding errors, by Fast Fourier Transform.

The procedure implemented in the TURBIT-1 program is used to
simulate turbulent flows in a platle channel and annulus with radiusl
ratio of 5:1.1 For both types of flow different cases are realized
with a maximum number of grid volumes of 65536. Already for
rather small grid volume numbers the numerical results are in
good agreement with experimental values. Especially the velocity
profile and the mean velocity fluctuations are computed with
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significantly better accuracy than in earlier, direct simulations.

The energy - length-scale model and the pressure-velocity

gradient correlations are used as examples to show thaw the method

may be used successfully to evaluate the parameters of turbulence

models.

Earlier results are reviewed and proposals for future research

are made.
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LISTING OF OFTEN-USED SYMBOLS

) General Characterization of an Arbitrary Variable y

Average over time or over ensemble

Average value over a space limited volume

Deviation from average value

IV Average value over total flow volume

Average value over the planes with periodic
boundary conditions (x -x2;x-.);
"Period average value"

ii r Deviation from period average value

Vr Average value over a mesh volume

-- Average value over a mesh area with normal
parallel to the x. coordinate ("i-surface")

x- - I 'rAverage value over the x-, y-lor r-surface
t I ~ i~ of a mesh

Arithmetic average value over adjacent
values in the xi direction in the grid
(same weight)

Same as y for thex-,y'-, r-direction

Same as Id with unequal weights
' x~V for considering non-equidistant meshes

t i i< according to (6-1)

D- Partial derivative of y with respect to x
bx

"dxu Central difference quotient of y:

Av
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Difference quotient according to (6-2)

Difference quotient according to (6-20)

(As a rule) component in xi direction /168

(ij=1,2,3)

rI -rf Components in the x-, Y-, r direction

Vector

Matrix

Average value

Ya Maximum value

IMinimum value

~w jWall value

(for velocities:) Velocity value at new
time step when pressure is ignored.

Dimensioned variable

ab Reference quantity

2) Summation Convention

Sums from one to three are taken over pairsj of unknown

subscripts on the lower right:

~3

The same indices take on corresponding values when located

at another position (upper left or upper right).
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No sums are taken over indices on the lower right, if they

are in square brackets

3) Symbols

4tC,...,s Turbulence model constants (Chapter 2)

Aw Constants in (2-8)

C1 c--- -C Fine structure model constants (Chapter 5)

d~,oiCds (A2 - 32)

D Wall distance

.J.c&'+ Deformation velocity

Time average of the difference form of the
square of the deformation velocity (according
to 4-23 to 26)

Undetermined form of kD 2

D D2 S... ' Fortran program according to Appendix 2

DI bt'... DOS / Fortran program according to Appendix 2

D44I... ,.4< Fortran program according to Appendix 2

Unit vector in x. direction

Kinetic energy

Kinetic energy of the fluctuation motion

E within the mesh

EThree-dimensional, average, scalar energy
spectrum (Appendix 1)

One-dimensional energy spectrum (Appendix 1)
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Ej A> Tensorial energy spectrum (Appendix 1) /170

E44  ) = E1 1 (k 1 .e )

£an (AA) = E 3 (kl 1e)

E E3/ Er Function according to Chapter A2.2

41 Ez iConstants for considering the wall roughnesses
in (7-8), E1 for the wall at Rl,E2 for r=R2.

Factors according to (4-38-40)

F Area

jF j-area; mesh area, whose normal is parallel
to the x. coordinate

F(C] ILongitudinal correlation (Al-5)

FED (4-27)

FED4I Fortran program according to Appendix 2

G£ t) Transverse correlation (Al-6)

G Amplification matrix (A6-15)

h Average mesh edge length (5-6)

hl,h2,h 3  Relative mesh edge lengths hi7Axi/h

H1,H 2 ,H 3  Mesh edge lengths

i Subscript (often with respect to the x
direction

- f7 Imaginary unit /171

lM Number of meshes in the xl direction

j Subscript (often with respect to x2 direction)

Number of meshes in the x2 direction

k Subscript (often with respect to x3 direction)
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k Scalar wave number

k Scalar wave number with respect to x

direction

k Wave number vector

k Karman constant (0.4)

k Rotta constant (A1-48)
p

iK Weighting function (4-13)

KM Number of meshes in x 3 direction

m Subscript with respect to xl direction

1 Turbulence ball diameter

L Correlation length (2-5,6,7)

LDiameter of the region with local isotropy
(Chapter 4.1)

m Subscript with respect to x 2 direction

Subscript with respect to x 3 direction /172

or for characterizing the time step

oflA 1 nq t Various time steps of the differencing
procedure; see Chapter 6.2.1.

N Number of time steps over which averaging
is carried out according to Chapter 6.2.1.

p Pressure

p I Average axial pressure gradient

Radius coordinate

Re Reynolds number (1-13)

Rem Reynolds number (1-14)

mRadius of inner cylinder

R2 Radius of outer cylinder
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R Residual termn

Resj Two-point correlation (Al-I) between
velocity fluctuations

R Two-point correlation between arbitrary
variables

-! Coordinate

t Time

u Axial velocity component (Figure 1)

u Velocity vector

-I eU 3 ' See Figure 1

)l X 9vy See Figure 1

v Azimuthal velocity component (Figure 1)

V A volume

w Radial velocity component (Figure 1) /173

x Position vector

Position vector (Figure 1)

x Axial coordinate (Figure 1)

X1,X 2  Period length for plate in the xl or x2direction, respectively.

X Period length in x direction for annulus

y Azimuthal coordinate (Figure 1)
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y An undetermined quantity

z Radial coordinate (Figure 1)

Kolmogorov constant (4-4)

dC( Kronecker-Delta

A Interval

F Gamma function

E Dissipation (1-16)

1n Kolmogorov length (Al-33)

SDirac function

X Eigenvalue

Turbulent velocity of fine structure

Locally isotropic part of fine structure-I
viscosity

Inhomogeneous part of fine structure-|
viscosity

v Kinematic molecular viscosity

Hi Displacement vector

I Density /174

'X41 1 Correction factors (5-14,15, 5-82)

" Integration variable

Volume correlation (4-20)

0 Period length in azimuthal direction for
annulus

x Auxiliary potential (Chapter 6.2.2)

XlX 2  Undetermined turbulent fields (Chapter 4.2)

w Rotational velocity, rotation
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A PROCEDURE FOR THE DIRECT NUMERICAL SIMULATION OF

TURBULENT FLOWS IN PLATE AND ANNULAR CHANNELS ANDI

ITS APPLICATION IN THE DEVELOPMENT OF TURBULENCE

MODELS*

Ulrich Schumann **

1. INTRODUCTION / I
_

1.1. Turbulence

Turbulent flow fields [53, 89, 115, 120] are characterized

by their irregular structure. The velocity at a position

fluctuates greatly and in an irregular way. Turbulence is a

flow state which usually comes about when the ratio of the

inertia forces and the viscosity forces inside of the fluid

characterized by a Reynolds number exceeds a critical value.

Below this critical Reynolds number there is a laminar flow field.

For large Reynolds numbers, the flow is unstable, i.e. two flow

states which differ by an arbitrarily small amount diverge in

time so much that after some time they no longer have as much in

common as two arbitrarily selected flow states. This instability

is the reason for the existence of turbulent flows. Because of

the large velocity fluctuations, the exchange of momentum and

c* Accepted dissertation presented to the Mechanical Engineer
Faculty of the Univ. of Karlsruhe (TH)

** Nuclear Research Center, Karlsruhe, Report KFK 1854, Institute
for Reactor Development, Nuclear Research Association mbH.

*** Numbers in the margin indicate pagination of original
foreign text.
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scala:r variables such as enthabpy and mixing components is

greatly intensified over the molecular exchange which takes place

in laminar flows. The quantitative description of turbulent

flows is therefore important for many regions. In practice,

usually one must depend on experiments. This is especially true

for complicated geometries, such as for example the flow around

local blocking units in reactor fuel elements [75] as well as in

channel flows, for example [88].

The results of such experiments were first approximated

by simple formulas, with which it was possible to perform

interpolation within the measurement range. The Blasius law [1201

for the representation of the dependence of tube friction

coefficient on Reynolds number is a typical example of this.

By considering the basic equations, at the present time turbulence

models are being established with which it is possible to carry

extrapolations to ranges for which no measurements are yet avail-

able. Chapter 2 reports on such turbulence models. It becomes

clear that these models must be supported by expensive experi-

mental work. /2

An old dream of flow research scientists is to theoretically

solve the Navier-Stokes equation, which is assumed to be valid

for the description of turbulent flows (see Chapter 1.3). At the

present time, this is not possible under general conditions,

especially because of the great deal of effort required to

describe the nonsteady flow fields. Even for "one-dimensional"

geometries (for example tube), these are always three-dimensional

functions of location. As the capacity of electronic computers

is enlarged, we believe that this problem will be brought closer

to a solution. For example, it was Deardorff [29] who simulated

the turbulent flow between two plates. In the present paper we

continue this work. This further development is in the following

areas:
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- Improvement of the theoretical fundamentals

- Simulation of flows in plate channels as well as in

an annulus channel

- Application of methods for determining turbulence model

constants.

In addition to flows in closed channels (for example,lin a

reactor fuel element), the numerical description of turbulent

flows is also of interest in meteorology [614]. Much basic work

has been performed in this connection. The application of

numerical methods for simulating turbulent flows within the frame-

work of reactor technology will be important in the description of

local meteorological processes in the vicinity of nuclear power

plants [129].

1.2. Geometry, Boundary Conditions, Material Constants, /3

Reference Variables

In this paper we will consider channel flows, which are

problems usually considered in reactor technology. Because of

their simplicity, we consider the annulus channel and the plate

channel in order to reduce the numerical effort and because there

exist, experimental results for comparison. According to

Figure 1, the annulus considered is "infinite" in the axial

direction and is determined by the separation of the walls, 6
as well as the ratio R2/Rl of the radii of the outer and inner

walls. The plate channel which is extended to "infinity" in two

directions is found by the limiting transition

R24- rD== con

These geometries can be described using relatively simple

Cartesian coordinates
A r

3



or cylindrical coordinates

where

= cos 4P -,f se

More complicated geometries are described in Chapter 11.2.

The flow under consideration is assumed to be a steady (turbulent)

flow in the x: direction in the statistical sense*, which is

produced by forced convection because of a specified pressure

gradient

or a corresponding axial field force per unit of volume.

The average velocity is not a dependent variable, but depends
A

on P instead. As a reference variable "oi for the velocity, we

will not use the average or maximum velocity but instead the

velocity which can be derived from the pressure gradient

%- (1-2)

Equilibrium of forces results in the following average value of

the shear stress<Tw at the walls:

- \ P~ .' (1-3)

and therefore we also have

o = (1-4)

* i.e. average values < > taken over time or the ensemble.



This velocity is called the "shear stress velocity" [120, P. 5 42 ]./4

The following dimensioned reference variables are

Symbol Meaning Dimension (i.e.)

D Distance between walls m

t D Characteristic time s

,. Pressure
ms

SSpecific density 3
m

VO Characteristic kinematic m2
molecular viscosity s

The fluid is assumed to be incompressible and the density *g!

is independent of location and time. The average viscosity is

assumed to be *. ; the viscosity \can be a function of position

and time. We will impose the wall adhesion condition

4Iwall = 0 (1-5)

as a boundary condition. In addition, the flow field in the axial

direction is assumed to be constant in the statistical sense.

1.3. Basic Elquations

The basic equations are the conservation equations for mass

and momentum. Using the reference variables defined in Chapter 1.2,

we have the following equations [531 which go back to Navier [861

and Stokes [1171:
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Assumptions:

- Incompressible fluid

- Constant densities

- Newtonian fluid (i.e. linear, isotropic) material law for

the shear stress as a function of the deformation rates,

no moment stresses

- Fluid can be described as a continuum

- No field forces except the average pressure gradient Px
- Euler frame of reference

Cartesian coordinates:

Mass conservation (continuity equation): 0 (1-6)

- Momentum conservation /5

+w a cUI +U G.
,t a ( € , d (1-7)

I I 1

Cylindrical coordinates:

- Mass conservation (continuity equation)

bU VX i/ i-- d= (1-8)
ax =01g

- Momentum conservation

a ( dp

0 I (1-9)

227
* The summation convention holds. Terms with repeated subscripts
[not inf brackets] are summed from i to 3.
6
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Here we have defined:

.= (I. I 3 ( o1vo I

X - -

-i- Cotd

t -- t=

V ,4

Re

The terms have the following meaning:

I : Local acceleration

II : "Convection terms", difference between momentum flowing

into and out of a differential volume element.

III : Pressure fluctuation gradient /6

IV : "Diffusion terms", the momentum supplied per unit of

volume by molecular transport (negative, therefore

momentum sink)

7



V Px = 2, average pressure gradient in the x direction or

force per unit of volume (position and usually time-

dependent) (momentum- source)

The terms and - I in the convection terms of the

-Iand.?t7components are called the Coriolis or centrifugal

accelerations.

Sometimes other notations are used for the convection or

diffusion terms, which are sometimes more advantageous. We will

only give them for Cartesian coordinates:

01 I (because of 1-6) (1-10)

The left form is called the conservative form, because its

integral over the entire volume is zero (see Chapter A5.4).I

f2( v (2 f' 4SV VC j) (1-11)

ix t-S - * ( S (1-12)

(In the second equation, the first term only contains mixed

derivatives.1 This can be used to formulate simplified boundary

conditions.)

One should consider that .corresponds to a Reynolds number Re

Re = o D/ j' (1-13)

which,lhowever,lis not an independent variable (see Chapter 1.2.).

The Reynolds numbers Re of Re formulated with the average

velocity I , and the maximum velocity ( ,max respectively,

8



are found as

Re,- Se
,TO 

(1-14)

In the following we will refer to Rem when we speak of Reynolds

numbers.

1.4. Derived Blasic Elquations

Further equations can be derived from the momentum and mass

conservation equations and the wall adhesion condition by

carrying out purely mathematical operations. In this paper,

we will require such equations for the kinetic energy per unit

of mass Esft(. and the pressure per unit of mass p.

1.4.1._ Conservation E uations of Kinetic E\nergy /7

By forming the slcalar product of a velocity vector and

its partial time derivative, whereby the latter is specified by

the momentum conservation equation, we find a conservation

equation for the kinetic energy of a fluid:

Cartesian: E .

+ - (( ++4 E(1-15)

where

'V + (1-16)
V a s ax R -

is the dissipation, i.e. the energy converted into heat per unit

of time and unit of volume by the work of the viscosity forces.

The equation itself does not contain any new physical informa-

tion, but the dissipation can be identified from the first theorem

of thermodynamics [7, 53, 1201.
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The corresponding equation in cylindrical coordinates is

given as follows where E- l , 4 w

4 ax

(1-17)

The dissipation E is given by:

S(1-18)

Because of (1-5), we have the following wall condition

If we form the divergence of the acceleration vector given

by the momentum conservation equation (1-7,9), then because of

the continuity equation c 9.' we have the following:

In cartesian coordinates:

S- - -Y - -)I (1-20)

10y 7 (. (1-19)

10_ a !

10



or in cylindrical coordinates

4 2 4~d (1-21)

where qlzyl is the expression corresponding to qart. for which we

will not give the details.

From (1-5) and (1-7) we find the following wall condition:

T T 4)) wa)1 I (1-22)

This is an elliptical, partial differential equation of

the Poisson equation type with a Neumann (inhomogeneous) boundary

condition which must be satisfied at all times. This equation

characterizes the importance of the incompressibility condition

and of the pressure, because it causes a disturbance in the

velocity field to propagate in the flow space with "infinite

speed of sound".

1.5. Principles of Numerical Simulation of Turbulent Flows

1.5.1. Direct and Model Simulation

There are two principally different directions in the

numerical simulation of turbulent flows.

One method (used in this paper) consists of the direct

integration of the basic equations according to Chapter 1.3.

Models are only used for certain deficiencies associated with

the solution, which are called fine structure models or correction

models. The limited solution is always caused by the limited

computer capacity, as will be discussed in the following.

The direct simulation methods are characterized by the fact

11



that the fine structure models contained in them and the other

errors go to zero when the resolution is increased in very

powerful computers. Three-dimensional, nonsteady flow fields /9
are always simulated. In the second method, first the exact

basic equations are approximated by model equations, and their

model character does not disappear when the resolution is

increased arbitrarily. Usually these are model equations for

describing time averages or ensemble averages of flow fields

[12]. In Chapter 21we will discuss the principles and problems

of such models.

In the following we will give a summary of the numerical

method of direct simulation. Since true turbulent flow fields

have only been calculated by Deardorff [29, 30, 31, 331, this

summary will also include methods of simulating laminar flows.

1.5.2. Methods of Numerical Simulation

The natural method of directly using the basic equations

given in Chapter 1.3 and then making them discrete and trans-

forming them into a difference method suitable for computer

simulation is neither the only method nor the first used method.

In addition to this type of simulation of the so-called "primitive

variables", the velocity components ui and the pressure p, first

a rotation potential form was used. Recently, the basic

equations were expanded into eigen functions, using the Galerkin

method. A summary of the various methods is given in [58, 43,

441]. In the simulation of the primitive variables, a problem

arises in the consideration of the incompressibility condition

and therefore a problem associated with the pressure. For the

first time Harlow-Welch [541] carried out this method (only for

laminar flows in two dimensions). Starting with initial

conditions, which satisfy the continuity equation, the pressure

is determined at any time using a difference formulation of

12



Euations.(1-19, 21) in such a way that the time derivative of

the velocity components satisfies the continuity equation. The same]

method was used by Williams [149] and Deardorff [29] in three

dimensions. In this case, a correction according to Hirt-Harlow

[56] was introduced so that small deviations of the initial values

from the incompressibility condition do not gradually increase.

The simplification of this process was suggested by Chorin [21],

and for example Amsden-Harlow [31. The pressure was not /10

calculated directly, but instead an equivalent auxiliary potential

the magnitude of which was determined in such a way that the

incompressibility condition is maintained for arbitrary initial

conditions. This method will also be used in this paper and will

be explained in Chapter 6.2.2. Other papers in which the primitive

variables were integrated are, for example, [27, 42, 62, 63, 941.

The problems with the pressure do not occur in the rotation

potential form of the basic equations. For this purpose, the

rotation wuz is formed for the basic equations

S 'k' 2 • e,1 (1-23)
axk I

where Ec£It = 0 in case two subscripts are the same

= 1 in case the subscripts are cyclical

= -1 in case the subscripts are anticyclical

The pressure drops off because of

(1-24)

The velocities are calculated from a vlector potential VTl

v (1-25)

so that 0-/dx 0ro.

13



From (1-23) and (1-25) we find the following equations for

determining the vector potential

z--4C2 (1-26)
ax

Instead of a Poisson equation for the pressure, it is

necessary to solve three Poisson equations in three dimensions

at every time step. In addition, the solutions and wi are not

so simple to interpret as are ui, p; this has an effect on the

formulation of boundary conditions. This method used by Aziz-Hellums

[2] and Schinauer [121] for laminar flows is not being recommended

in recent papers [441]. This is not true for two-dimensional flows.

Here only one component of rotation is different from zero and

therefore only one Poisson equation must be solved. This method

has proven itself many times [40, 41, 44, 49, 78, 83], but a three-

dimensional representation is required for the simulation of turbu-

lent flows. (See for example Chapter A1.2.2 as well as [81, 83]).

Over the last three years, the Galerkin method was developed

further, especially by Orszag [94, 95, 96, 971. The velocity

field u(x,t) with respect to position x is expanded into eigen

functions, for example:

where only a finite number of discrete wave number vector

elements k are numerically considered. The advantages of the /11

method are the following [96]:

a) The derivatives of the velocity field can be determined

without any truncation error.

b) For the same storage capacity, 8 (two in each direction)

times as many wave number components can be simulated in three dimen-

sions as can be done using a difference method. This is because

14



in a spatially discrete mesh network containing KM meshes, only
KM

a maximum of 2 wave numbers can be represented in one direction.

c) The aliasing problem (see Chapter A5.3) can be avoided.

Advantage a) is not very important [33],(see Chapter A5.2.1.)

The disadvantages of the method are the following:

a) Nonlinear terms, such as for example the convection

terms or nonlinear viscosities can only be calculated in real

space. For this, the fields v(k,t) must be transformed into the

real field u(x,t), whereupon the nonlinear terms are calculated

and then a retransformation is carried out. This transformation

costs a lot of computer time, and only the fast Fourier transfor-

mation, FFT [19,20] limits this time to within acceptable limits.;

b) The eigen function development is only possible for

simple geometries (plate, sphere, cylinder) [94,97]. However,

complicated geometries can be mapped into manageable and simpler

geometries using suitable conformal mappings.

c) The methods and the corresponding programs are more

complex. This method is not to be recommended in spite of its

elegance [44, 951.

Finally, we should mention the finite element method

(F.E.M.), which was applied to flow problems,by Crastan-Devos [24]

for example. Crastan showed that even if a variational principle

does not exist, which has not yet been found for the general

Navier-Stokes equation, it is possible to apply the (F.E.M.).

The advantage of the (F.E.M.) is in the simplified description

of complicated geometries and boundary conditions. However, this

method leads to large systems of equations which are very nonlinear

15



for turbulent flow. The finite element method has only proven

itself for linear flow problems. /12

In this paper we will therefore use the method of simulating

the "primitive variables" mentioned first.

1.5.3. The Method of Deardorff

Deardorff [28, 29] simulated the nonsteady, three-dimensional

and turbulent flow between two parallel plates. He considers

a section of the plate flow having a length of X= 3 in the flow

direction, with X2 =0.7in the azimuth direction (perpendicular to

the flow direction, parallel to the plates), as well as the

complete plate cross section in the radial direction (perpendicular

to the plates) with D = 1. The flow volume is divided into

equidistant measures having the edge lengths

&= 3/2= 0.22S, -= 2/AO.O/ O /2o=o.O. (1-28)

that is,linto 24-14-20 = 6720 meshes.

The fine structure of turbulence (see Chapter 5.1) is con-

sidered by means of models, such as developed by Lilly [80, 81,

32]. The agreement of the average results with the measurements

of Laufer [76, 77] is average. For example, the average

velocity profile deviates by up to 50% from the measured values.

The agreement with the measurements of Comte-Bellot [18] at

higher Reynolds numbers is slightly better. These errors can

partially be traced to the small numbers of meshes, as well as

to errors in the fine structure model and the boundary conditions,

as we will show in this paper. Deardorff's finel structure model,

strictly speaking, is suited for meshes having equal sidelength,

in contrast to (1-28). It is now possible to transfer the

fine structure model to cylindrical coordinates.
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The evaluation of the results resulted in information on

the structure of a flow. For example, it was possible to

determine that the "turbulence balls" have different dimensions

depending on the velocity component in the axial direction.

In the papers [27, 30, 33] the temperature field considered

as a positive quantity was also integrated, and the stability

of the atmosphere flow was investigated with suitable boundary

conditions. The mesh network consisted of a maximum of 40*40*20

meshes in this case. No evaluations were carried out for testing

or improving the turbulence models, as we will do in this paper.

The most important result. of Deardorff's work is the proof

that the direct numerical simulation of turbulent flows is possible

at high Reynolds numbers and that a fine structure model can be

used which is independent of specific experimental support.

1.6. Resolution Capacity and Requirement for Fine Structure

Models /131

1.6.1. Physically Required Resolution for Direct

Simulation of Turbulent Flows

Up to a few years ago, it was doubted that it would be

possible to carry out a direct numerical simulation of turbulent

flows [23, 35, 1211. The requirements for a complete numerical

simulation are found as follows:

Emmons [35] estimates that about 1010 meshes will be re-

quired for describing the fine structure of a turbulent tube

flow at a Reynolds number of about 5,000. The computation

time using modern computers is estimated at 100 years. The

order of magnitude of the lengths which must still be resolved
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is derived from the wall roughness magnitude, which brings about

a change in the pressure loss amounting to 10% compared with

that for a smooth wall. In addition, the amount of effort

increases with increasing Reynolds number.

A similar estimation can be made as follows: a direct and

complete simulation must at least include the laminar sublayer.

A measure of the mesh edge length required for this is therefore nz/

the thickness of the laminar sublayer. In general, the following

formula is used [120, P. 553]

1z = S'
(1-29)

Ulsing the definition of o and the resistance coefficient X

S -
(1-30)

we find

Z- i 
(1-31)

and therefore

s-. _ (1-32)

If the Blasius resistance law [120, P. 5531 is substituted

for X for tubes at Reynolds numbers which are not too high

= 0.3164 Rem -1/ 4  (1-33)

then we find

6ZZ25 Re (1-34)

and therefore, for example, for Re = 105, according to Figure 2

1810-
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Consequently, KM " 10 3 meshes would be required in the radial /14

direction or 109 meshes in the three dimensions.

If a special "wall law". model is applied for the wall layer,

it would be interesting to determine the resolution Az which

would be required in the turbulent core flow. A measure for the

required length is the Kolmogorov length n, as will be discussed

in Chapter Al.2. For locally isotropic turbulence, we use the

turbulence ball diameter to characterize the flow for which the

inertia force and the viscosity force make an equal contribution

to the disintegration of the ball:

' (1-35)

If the energy conservation Equation (1-15) is averaged over

the entire flow volume, we find

t (' - < @ / (1-36)

Because of / > 2 4'/ we then find

.4

and with (1-33)

(1-38)

For Re = 105 we would also have the following according to

Figure 2

1 lo-31

Therefore we obtain the same results, which is interesting.
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We would expect that such a large number of meshes could not

be handled on a modern computer. The following section will show

this.

1.6.2. Possible Resolution and Final Conclusion

If KM is the number of meshes in one direction, then the

required core storage increases according to KM 3 for isotropic

resolution. If we consider the fact that about nine variable

values (3 velocity components, and one energy and divergencel

value each at 3 different times, that is 15, and only nine at

any time if suitable programming is used) must be stored, then

we find that 4 bytes are required per storage location and per

value, according to Figure 3. The core storage available on

the IBM 370/165 in Karlsruhe to the users is 2000 K byte (lK=1024)

at the present time. This means that problems with KM - 40 /15

can be calculated with core storage as a maximum. If suitable

dynamic data management is used, so that at any time only one

value is in core storage per mesh point and the rest is on

background storage units, then it is possible to process problems

with up to KM 4 80.

However, the computation time restriction is even greater.

In order to simulate a three-dimensional unit of time, a compu-

tation time is required which increases in proportion to KM 4

because the permissible time step is proportional to KM-1 (see

Chapter 6.3.2). For a mesh network of 16x16x16 meshes, and for

a time step of At-5*10- on the IBM 370/165, the approximate

calculation time is 3 seconds. This means that the computation

time per dimensionless time unit is about 10 minutes. This means

we have the computation time dependence on KM as shown in Figure 4.

In order to obtain a statistically steady solution 2-3 dimensionless

time units are required. This value obtained from experience [331
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is confirmed if we consider the "break in time" Te, the time

during which the inlet length is passed by the flow in a tube,

that is i.(

Te _V_ (1-39)

According to Latzko [48, P. 233] the following applies for

tubes:

L = 0.693 (Rem) 1/4 (1-40)

where vg) s 30 (order of magnitude [18]

therefore
Te e 0.023 Re 1/4 

(1-41)

For Rem Z lo we find Te 2.3

If we assume that commutation times of about 10 hours are

acceptable, we find that the maximum usable mesh number is

KM " 40. This is probably the order of magnitude of the upper

limit which can be reached today.

More as a footnote we would like to state that the compu-

tation times required for KM " 1000 in one direction, according

to Chapter 1.6.1, can be realized in 20-30 years with a

reasonable amount of effort. We can make this estimation if we

extrapolate the computer improvements which have taken place

over the last 20 years. The computer speed increases by a

factor of 10 every 6 years and the core storage capacity in-

creases by a factor of 10 every 5 years [71]. Of course, some

reservations must be made about exponential extrapolation.

We therefore have the following results: for a complete /16

direct simulation of turbulent flows, a mesh network with about

(1000) 3 meshes is required, already at moderate Reynolds numbers

21



,Em j105 ). Based on the computer capacity of today, only mesh

networks of the order of (40)3 can be processed today, i.e. the

resolution which can be achieved is not sufficient to resolve

the turbulent structure with characteristic lengths of less than

01 . Therefore, better models are required for this "fine

structure".

1.7. The Purpose of this Paper

The overall purpose of this paper is to develop methods

for the direct numerical simulation of turbulent flows at high

Reynolds numbers. The results of the numerical simulation will

be used for the following purposes:

a) To improve our knowledge of processes in turbulent flows

b) To determine characteristic features of turbulence

which cannot be measured

c) To test the validity of turbulence models for flow

fields averaged over time or over the ensemble. To

determine empirically determined variables and to

suggest improvements.

We do not intend to develop direct simulation methods for

practical design problems in technology. Instead we wish to

support the only practical turbulence models. We would like

to emphasize the fine structure model. This will be done

independent of any selected geometry, should be independent

of experimental support and should be valid for all variable

mesh sizes.

2. STATISTICAL TURBULENCE MODELS

In this chapter we will discuss the details of turbulence

models, their problems and the direct numerical simulation
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of turbulent flow fields using these models. In particular, we

will discuss the problem of the "universal" applicability of

turbulence models. The turbulence models discussed are not new.

However, we believe that the discussion will be helpful for the

understanding of turbulent flows. In addition, we will define]

the turbulence model variables determined during an evaluation.

/17

2.1. Requirements for Turbulence Models and Purpose of

Model Theories

Turbulence is a random process [89]. It is not desirable and

not possible to describe all of the details of this process. As

a rule, we are only interested in certain statistical average

values, such as for example those of the velocity values, pressures,

or their products. Thereforegit is not appropriate to solve the

unsteady differential equations and determine the solution.

Instead, the differential equations themselves are averaged first.

If we form the time average, (characterized by the < >) of the

momentum conservation Equations (1-7), we find equations which

contain more unknowns than equations:

T 4 4 <0a > (+ (> I(2l)

Additional unknowns are the following correlations named

after Reynolds [107]

( qi' j')- < (Ui >) J(2-2)

which have the dimensions of a stress per unit of mass, and

which are therefore called Reynolds stresses. It is possible

to establish differential equations for these unknowns [12, 115].

However, these contain a large number of unknowns which are triple

correlations of the type (ytL'v'/ and (*''>! , respectively.

In this way we do not obtain as many equations as unknowns for

a finite number of equations. A truncation must be carried out
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in some way, and the other unknown quantities must be calculated

using suitable approximations from the known variables. In this

case one refers to "closure problems". The set of equations

obtained with these approximations is called the turbulence model.

In the following we will describe a few turbulence models

and discuss the large number of suggestions put forth in this

area. Summaries can be found in [53, 59, 91, 1.15, 127]. In

the formulas, we will restrict ourselves to one-dimensional,

Cartesian problems, and x will be the flow direction axis.

z is the perpendicular axis to x, measured from a limiting wall,

where we have <U>= v(4>z).i It is the general goal of turbu-

lence theoreticians to find a "universal" turbulence model which

satisfies the following requirements:

- It is valid in as many cases as possible (for various

geometries, boundary conditions, types of turbulence

production, etc.)/without changing the model or without

any model constants, so that extrapolations into new

areas can be made without any new experiments,

- On the other hand it should be simple enough that it

can be used in practice with a justifiable amount of

effort.

/18

In the following we will discuss the existence of such a

"universal" turbulence model in connection with a few special

models.

2.2. The Prandtl Mixing Length Model

According to what was said above, in one-dimensional flows

only one component of the Reynolds stresses is different from zero.

Let us assume that it is

< q4 'UO < 'U'"W'> (2-3)
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w' is the fluctuation component perpendicular to the wall

(Figure 1). The simplest model for this isl the Prandtl mixing

length model [98]. Using a Boussinesq model [5], in which the

following expression is assumed for the molecular stresses,

d-uu> r(2-4)

in analogy to the Newtonian stress law Prandtl determined the

apparent turbulent viscosity vturb based on the idea of motion

based on the individual turbulence balls (in analogy to the

kinetic gas theory) over a distance of one free path length

L (the mixing length) as follows

V = L I LI .X (2-5)

It is difficult to determine the mixing length L. In the vicinity

of the wall we find [120]

L = k-z (2-6)

with the Kdrmdn constant k * 0.4 and for a large distance from

the wall

L 0.1 D,j (2-7)

where D is a characteristic geometric length. Van Driest [25]

then gave a formula for L which makes it possible to calculate

(t&"u>) into the laminar sublayer. This was generalized by

Pantankar-Spalding to variable shear stresses T [104]:

L k, [- exp [zRe 4I/A:j (2-8)

The constant Aw considers the wall roughness T as the dimensionless

shear stress at the location z, which is determined from a

force equilibrium in the plate flow.
/19
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The Prandtl mixing length model has proven itself in many

cases, especially in boundary layer flows. For example, see [104].

One obtains erroneous results using this model in the following

cases:

a) Equation (2-4) leads to contradictions in the center of

a channel flow, if the location of zero shear stress

(I' '=o is not the same as the position of maximum

velocity( -- o )because of a non-symmetric geometry,j

for example annulus,lor because of differences in the

wall roughnesses [90].

b) Equation (2-5) can produce large errors if it is assumed

that the turbulent exchange coefficients are proportional

to V turb for scalar quantities such as temperature or

concentration (which is done often [49, 104]).

c) The quantities vturb and jia- are only proportional with

with a time lag for nonsteady flows or flows which are

substantially accelerated by varying cross sections.

d) In the case of complicated channel cross sections, it

becomes difficult to determine L in a suitable way; in

addition the real exchange coefficients have an isotropic

character; for example see [8].

e) For recirculating flows [49], such as behind ribs or

blockages [75], the model fails completely.

f) The model also usually fails for secondary flows and

other convective mixing effects.
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From this, some people infer that it is not possible to have

a universally valid turbulence model. Most researchers in this

area attempt to expand the range of validity of the turbulence

models by considering other variables and approximations to

the exact equations which are valid for this case and which can

be derived from the basic equations.

In fact, a universally valid model probably does not exist,

unless the Navier-Stokes equations themselves are used. However,

just like the Prandtl model can be looked upon as universally

valid at least for simple channel flows and in many cases, we

can expect that a model which extracts somewhat more information

from the exact equations will have "universal" validity in many

cases.

2.3. Energy Model According to Prandtl /20

Prandtl also suggested [991 such an improved turbulence model.

He set:

-Q Vw L c)t> (2-9)

The exact time-average kinetic energy <Eso: ( -t,>)p of the

fluctuation velocities, which is required here, satisfies the

following equation which is derived from (1-15) by time averaging

(with v = const)

Diffusion Production Dissipation

Approximations for the underlined and unknown correlations

can be introduced from a dimensional analysis or with simple

models. Therefore we obtain the following model equation [115]:
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tT - 2 C-i
_ _ ____L___ (2-11)

Diffusion Production Dissipation

The model consisting of Equations (2-6), (2-9) and (2-11)

contains the Karman constant k as well as three constants

al, a2 , a3 which are determined from experiment (see Chapter 2.6).

This model is especially advantageous where the Prandtl

mixing length model fails because of restrictions b) and c)

mentioned in Chapter 2.2. Nevertheless, the calculation of the

length scale L is probelematical and it is computed according

to Chapter 2.2 as a first approximation. This is a considerable

disadvantage for recirculating flows, as the paper of Runchal and

Spalding [116] clearly shows. These authors use the model given

above to calculate the flow field (and from it the temperature

field) after a sudden tube expansion. The calculated streamlines

are impressive. However, when one reads that the field of length

values L was determined using complicated algebraic equations

containing four empirical constants such that the velocity field

agreed with the corresponding measurements, one is disappointed.

The temperature field calculations are the only ones that are of

any value. Consequently, it is necessary to have models for the

length L, which are obtained from approximations of exact

equations.

2.4 Length Models According to Rotta /21

As mentioned above, for an example, it is necessary to know

the characteristic lengths L for turbulent exchange processes

in a description of any turbulence models. Such a statement is

typical for turbulence problems. Incompressible flows are

characterized by the fact that perturbations at one location
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are transmitted to the entire flow field through the action of

the pressure field (see Chapter 1.4.2). This becomes clear if
we consider the general solution of the Poisson Equation

(1-19) for pressure [134] (for v = const):

-SS& II V( (2-12)

Turbulence variables, which consider the spatial structure

of the flow,jalso represent statements on correlations between

variables at various points in location-time space [53, 115],
in addition to length scales. This is also true for correlation

spectra at a location as a function of the time frequency f or
as a function of the three-dimensional wave number vector

k [132, 53, 116] (see Chapter 4.2.2). This is also true for

the derived variables, such as,lfor example the average frequency

[68, 127].

In order to have a model equation for a length L, it is first

necessary to give a suitable mathematical definition of this

length L. The mixing length model is not sufficient to define

a theorem according to the exact equations. Rotta [108, 115]
gave the following definition for one-dimensional flows:

3' (2-13)

According to the following sketch, this length is the integral

of the correlation coefficient
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(The negative course for rp>zj is a consequence of the continuity

equation). The quantity L defined in this way can be interpreted

as the average diameter of turbulence balls. If the time

derivative of the integral given above is formed and if we substitute

the momentum exchange equations for 1 , we obtain an equation for

determining L [109, 114, 115]. The following equation presentation

shows the exact equation on the top and the approximation adjusted

by Rotta [114, 115] on the bottom

/22
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Dimensional analysis can be used to obtain the approximate

equations (especially for the sink term and the pressure velocity

correlations). Also analytical methods must be used. The

approximation of the production term is based on a Taylor series

development of the integrals. Additional terms of the type

L -. ,n=5,7,. are conceivable. Up to the present, only the

first term was considered (a5 = 0), as will be reported on later

on. This together with Equations (2-9), (2-11) represents a

model which makes it possible to calculate4yV,('., and L based on

the so-called transport equations and %°'w') based on an algebra c

relationship. Numerical methods for solving this and similar

equations are given in [49, 104]. This model contains 8 constants

a . When using an additional transport equation for ('w'l

according to Rotta [114], 13 constants are required. The main

problem of turbulence model theory then consists of determining

these constants in a suitable way.

2.5. Methods for Determining the Model Constants

Three main ways can be used to determine the constants,

for example al to a8 :

a) Consideration of limiting cases in which many terms

can be ignored,(Ouch as the immediate vicinity of the /231

wall where the Prandtl mixing length model is valid)

or homogeneous turbulence (where all terms of the

transport equations for L vanish).

b) Integration of the differential equation with selected

values of the constants and variation of the constants,

so that the integral results agree with as many

experimental results as possible "target values"

in the sense of a least square fit.
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c) Direct determination of the constants by measuring

the terms which occur in the defining equations;

for example (

2 ( /L(2-15)

Method a) makes it possible to determine only a few

constants. Method b) has been used by Ng-Spalding [91]. For

plate flow, tube flow, plate boundary layer flow and free jet flow

they used measured values of the following type as target values

for plate and tube flows.

Method c) would be the most exact one. It will be possible

to determine whether the "constants" are indeed independent of

location and flow geometry and whether the model is therefore

universally valid. However, the measurement technique fails here

in almost all cases. The measurement of complicated correlations

of velocity derivatives,Ipressures and their integrals over space

is almost impossible. Perhaps the energy dissipation is an

exception, which is required in (2-15). The space derivatives

are usually determined by measuring time derivatives and

recalculating using the Taylor hypotheses [134]

X ' ('W (2-16)

(for discussion of these problems see [115, P. 148]), also

local isotropic conditions are assumed (see Chapter 4).

Therefore, one of the goals of this paper is to numerically

determine the terms contained in the definition equations

according to numerical simulation of position-dependent and

time-dependent flow fields, in order to determine the constants.
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2.6. Data for the Constant Values, the Influence of the

Uncertainties in the Constants and Their Numerical

Determination /24

Table 1 shows the constant values given by various authors.

It is difficult to make comparisons because the length L has

been defined in various ways, which according to (2-9) is

expressed in particular by the value of the constant al. We

can see the following:

a) No agreement exists regarding the values

b) No data is given for the second development coefficient

a5 of the length-product term (a5=0).

c) It was found that the constants are not universally

valid. Rodi-Spalding [113] had to use constants for

a turbulent free jet emerging from a round or rectangular

nozzle which differ by almost a factor of two; Ng-Spalding

[91] used a position function for a6.

It is very important to establish the variations of the

model equation solutions which are obtained when the constants

are varied. In other words, what are the effects of the uncertain-

ties in the values of the individual constants. Ng-Spalding [91]

varied their constants by 5% each to investigate this question and

calculated how much the integral values used as target values

varied. On the average we find the variations given in Table 2.

The constants are sorted according to the magnitude of the

target value change brought about by their variation. We can

see the following:
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a) It is more important to determine the constants exactly

which are contained in the source and sink terms than

those in the diffusion terms.

b) It is very important to have the correct model for the

length-production term. This means that additional

terms should also be considered.

In particular, item b) represents an important justifi-

cation for an experiment to determine the constants from

numerically simulated flow fields. A numerical method which

on the one hand does require models for the fine structure

cannot produce any particularly usable results for terms which

are greatly influenced by this fine structure, such as,jfor

example the energy-dissipation term and the diffusion terms. On

the other hand, we can expect that those terms can be calculated

in a realistic manner which are primarily determined by the

resolved coa se structure. Among these we have the length-pro-

duction term and the time-average Reynolds stress (' '. In

this paper we will make a particular effort to determine the

constants al, a4 and a5.
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3. BASIC EQUATIONS AVERAGED OVER MESH VOLUMES

In this chapter we will average the conservation equations

for mass and momentum over the mesh volume, in order to prepare

ourselves for the differencing method and the fine structure

model for direct simulation. In addition, we will derive a

conservation equation for the kinetic energy of the fluctuation

velocities contained within the mesh. The chapter contains

purely formal derivations and therefore no approximations which

must be given a physical justification. The method is new, and
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in contrast to earlier work, it is possible to build exact

difference approximations and fine structure models. At the

conclusion of this chapter, we will give a summary of the basic

ideas in the following chapters.

3.1. Justification and Definition of Mesh Averaging

In order to build up a differencing method, the flow space

is divided into as many regularly arranged meshes as possible.

For each mesh, one of the field values being integrated is

stored. In addition to the spatial division, the time axis is

also divided into a finite number of time intervals At and for

each time interval one each of the field values is stored at all

space locations. Then the differentials of the field values are

approximated by differencing field values at the various adjacent

meshes. One arrives at such differencing approximations by

either a Taylor series expansion and truncation of the series

after a few terms, or by formal integration of the differential

equations over a space-time mesh with subsequent approximation

of the non-analytic integral terms.

The Taylor series development can be truncated after a few,

for example, after n, terms [13]

1 (3-1)

Ilf the residual term

0 0x 4 (3-2)

can be ignored for very irregular turbulent flow fields, it is

not possible to simply assume that the product xn+l n+I will

remain sufficiently small for small x, because the derivatives

f (n+l can increase greatly with increasing n. Therefore, the

second method must be used for turbulent flows. Approximations

are also required in this case. They only assume that the higher
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derivatives of the field values averaged overlmesh volumes

(that is, smoothed field values) are sufficiently small. /26

The effect of the irregular fine structure within the meshes

is also represented in the average.dequations.1 The so-called

Reynolds stresses show this. These terms cannot be obtained

for Taylor series expansions.

Therefore, we will first use the method of Lilly [80, 81]

and Deardorff [29]. In the averaging, that is, in the integration

over the mesh volume and subsequent division by the mesh volume,
these authors did not take into account that some of the inte-

gration can be done analytically. Therefore,lthey have to assume

that

a .Z ' l (3-3)

which is, of course, correct. It would be correct to assume that

U 2( Ux )-(- Or o u (3-4)

Consequently, the field values considered in the differencing

method have been falsely identified as volume average values.

It is more correct to say that they are area average values.

The same difference formulas for the averaged fieldivalues can

be formally obtained from the above (for\equidistant mesh networks).

However, this leads to a different definition and approximation

of the Reynolds stresses which describe the fine structure.

Also the boundary conditions for the different formulas are

different. This will become clear in the following sections.

'/First let us explain the mesh network used and the

average values used. The mesh network is determined by a field

(not necessarily equidistant of surfaces xi=const. and t=const.)

A mesh with the indices 1, m, n, p is made up of the following
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space-time element:

VX . (3-5)

where the coordinates l/l+L x2/m+ Xyn+ t/p+ increase2 2 2
monotonically with the indices, and in addition we have, for

example

4 > p > 7l + - tp. >0

/27
The averaging of a variable y in a volume V' (which

at the same time equals the mesh volume as well as a space-

time region which is displaced with respect to the mesh volume)

is defined as

.SfdV (3-6)

If the volume V' is equal to Vlmnp, we have:

Cartesian: /P t iln- tilir{ W(x/

"P~ "3/n-t '"" % /-t ), (3-7)

Cylindrical: ip q 74" 4 P~ IT
V = S I-4f el I') ,Ix..dr -d-,O{tt

3.2. Continuity Equation (Mass Conservation)

First we will consider cartesian coordinates. The exact

differential equation a '" (1-6)
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is to be averaged over V. We obtain:

7 = 4 S, S S -"W" ' N (3-9)

If we consider the fact that each of the three sum terms of the

integrand is formally integrated with respect to one of the

coordinates (the x. 'coordinate) we obtain differences of two

terms in which it is only necessary to integrate over two space

variables and time, that is over a mesh area segment and a time

interval. This region defined in space-time space is called

"area" in the following. In order to simplify the notation,

we will call these area averages iy, for example

and we will call the differences which occur :&x., where,

for example

4 -'I ( Ye, , , ,p- e,-,,p)

Then the averaging gives,

Sle, , (3-10)

This equation is exact and has a formal correspondence with

the Gauss integral theorem [131:

V F

In a similar way, we find the following for cylindrical coordinates

(starting with (1-8))

38(3-11)
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where, for example f

S S S (3-12)

and the difference quotients 6d,dr, 4 are defined according to

the cartesian c .

We will repeat the result: At least the continuity equation

can exactly be replaced by differencelformulas, if the velocity

average values which occur are defined as average values of

velocities over a mesh area segment (as well as over a time inter-

val At), the normal of which is parallel with the velocity component

vector.

Since these area average values are taken over a different

area segment of the mesh, depending on the velocity components,

a so-called "staggered grid" [29, 30, 33, 42, 54, 62, 96, 1411,

is used, i.e. an"overlapping grid" in which the velocity values

to be stored are assigned to various locations depending on the

direction. Figure 5 shows the grid used. This grid has up to

the present not been used in the literature for formation of

area average values. It has only been justified because of the

simplicity and accuracy of the truncation errors of the resulting

difference formulas [33, 96].

3.3. Averaged Momentum Conservation Laws

We will now derive the average momentum conservation laws

which are similar to the average continuity equation. Because

of the complicated nature of these equations, we cannot expect

such a simple and elegant result here. However, we will show

how a different notation can be found using a formal method which

is very close to the differential equations. We will also show
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where approximations will have to be made.

/29

Depending on the equation component, a volume is averaged i

according to the staggered grid which contains the reference

surface of the average surface value of the velocity component

under consideration in approximately its center. The following

sketch shows this V 1 for the component 1 of the momentum equations

in cartesian coordinates:

XAAe

-'C Xe (3-12)

The limitation of the volume V1 in xl direction is selected

between the coordinate surfaces x/l 1 = const,ibecause in this casel2.1+
the error of the difference approximations required later on

becomes the smallest. If the momentum conservation equations are

averaged over such volumes Vi, and if formal integrations are

carried out wherever possible, we find the following:*

Cartesian:

V Z -- . J
a- : ho 6+ .. j 4- ' 7 (3-1 4)

Instead of integrating the differential conservation theorems
over volumes, one could start with integral conservation theorems.
It seems that the procedure used here is simpler when curvilinear
coordinates are considered.
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Cylindrical:

VX + Y4 1

+ e V + f2 f f

;f -- -

x x $

Here

is the average value of the radius in the volume Vr.

Area average values of velocity products occur in the

convection terms. (Volume average values occur in the Coriolis

and centrifugal acceleration terms). We may formally make a

division into average values and fluctuation variables as follows:

+(-L <- . - ) (3-18)

x1
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of the velocity from its (area-) average value,*

S(3-19)

then we obtain

CJu- , 4 (3-20)

We find that terms occur also here which can be called

Reynolds stresses [1071, just like what occurred in the time

averaging according to Chapter 2.1. In contrast to the Reynolds

stresses which occur when time averaging is formed, these vanish

when the diameter of the volume goes to zero because in this

case u' also goes to zero.
i

We will thus repeat the results again: Many terms of the

momentum conservation equations can be formally integrated for

volume averaging and then can be transformed into difference

form. Correlations occur among the fluctuation velocities

referring to area average values (and sometimes volume average

values) which are of the Reynolds stress type. However, they

become zero when the volume element diameter goes to zero. In

addition to these Reynolds stresses, there are numerous

velocity average values, which do not agree with those stored in

the grid, as well as terms with derivatives (however, only

first derivatives). This means that more unknowns than equa-

tions exist and these unknowns must be calculated from the known

velocity average values using approximations.

The approximations will be introduced in Chapters 5 and 6.

In order to provide approximations for the Reynolds stresses,

The notation ui uiui would be ambiguous; this complicated

notation is not used because it is always clear what is meant.
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it is first necessary to formulate the conservation equation of / 31

the kinetic energy averaged over the volume.

3.4. Average Conservation Equations of Kinetic Energy

In the following we will derive a conservation equation

for the kinetic energy of the fluctuation velocities within a

mesh volume, that is for

V- V 2 4

We obtain this conservation equation by formulating the

time derivative

We formulate the volume average value using Equations (1-7) and

(1-9) respectively and then subtract the scalar product of the

velocity vector vland using Equations (3-14) and (3-15),

respectively.

Just like in Chapters 3.2 and 3.3, we obtain the following

for cartesian coordinates:

- - E - -- - crIf X P) (3-21)

If we introduce the following as fluctuation variables

according to (3-19)

where the bar refers to the averaging process, and

S. -23)
E L(3 3
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we find:

V-

VV-

-V- VA.

On the other hand, the scalar product V- : is
V--

--Z - t- - '-v- -

-..,- a "K. (, 3a. .- " 5
ok +

If we introduce the following arithmetic averaging opera-

tion: --A (3-26)

and if we introduce the identities

. (o b6) S adldx, b + CdrC, (3-27).

ycrx- t aC( (3-28)
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and we assume the following approximation*:

4 / tZ- (3-29)

we can write:

V.- j V-

(3-30)

If we now subtract the result from the Equation (3-24),

we find the desired equation

1: q ' (3-31)

The terms have the following meaning:

v-

I Time change of the average fluct he Equation energy.

II Convection of the fluctdesired equation energy.

III Production terms; work of the Reynolds stresses

IV Diffusion terms; the term IVb can be ignored as a rule,

* According to the mean volume theorem of integral calculus

we have ' where is a point in the volume V.

J 75
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because the viscosity fluctuations are apparently not

correlated with the other terms.

V. Dissipation of the fluctuation energy. /331

Va: Total Dissipation

Vb: Dissipation due to average velocity

3.5. Summary of the Basic Ideas for Formulating a Closed

System of Equations

In this section we will describe the models which will be

used to formulate a closed system of difference equations, so

as to clarify the following chapters. We will only consider

cartesian coordinates.

Equation (3-14) with the division of the convective terms

according to Equation (3-20) contains two types of unknowns,

which must be calculated from the variables stored in the grid:

on the one hand there are quantities such as for example

which must be approximately calculated from adjacent mesh values
i-.

(for example,/from adjacent values of ) using linear rela-

tionships (algebraic average values). On the other hand, there

are the fine structure Reynolds stresses u ,u, which must be

calculated using nonlinear approximations from the average

velocity field u as well as from the kinetic energy of the

fine structure within a mesh VE . Chapter 6 will discuss

the linear approximations, which are simple in nature. The main

problem and most of the development in this paper will be the

discussion of the modeling of the nonlinear fine structure Reynolds

stresses. In the following we will give a brief description of

the principles used in the model, which are discussed in detail

in Chapters 4 and 5, as well as in the Appendices 1 -3.
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A trial solution is used for the fine structure Reynolds

stresses, which have the form of a Boussinesq trial solution:

/ ( c*1 1 e e

Here Jp is the turbulent viscosity which must still be determined.

The subscript points to the fact that the viscosity will differ

depending on the size and shape of the area considered over which

the averaging is carried out.

The Boussinesq trial solution assumes that the shear stress

and the velocity deformation vanish at the same time. As dis-

cussed in Chapter 2.2, this condition is not always satisfied

for the time average flow field. The reasons for this are the

effects of the walls and the geometry which are deterministic

in nature. /34

The analogy between the Boussinesq trial solution and the

molecular Newtonian shear stress trial solution assumes that the

turbulent exchange process as well as the molecular momentum

transport process are purely statistical in nature. This

assumption is probably more applicable for the fine structure

than for the coarse structure. Therefore the assumption seems

valid. The Boussinesq trial solution accordingly represents an

approximation, because strictly speaking the Reynold stresses

must be determined by integration of a corresponding conserva-

tion equation (which is in the form of a partial differential

equation). The most significant error in such an approximation

is probably the fact that the Reynolds stresses in the approxi-

mation are more closely coupled with the actual coarse structure

of the velocity field as represented by the grid, than the exact

equations state. In order to consider this effect at least

partially, the viscosity Ji is not calculated using an algebraic

relationship from the velocity field average over the mesh area
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(as is done for the Prandtl mixing length model, Equation (2-5)
and also as Deardorff (see Chapter 5.1) has done.) Instead,

it is calculated as follows:

(3-33)

from the kinetic energy of the fine structure, for which a

transport equation corresponding to (3-31) is also integrated

at the same time. JE' is the kinetic energy within the mesh area

under consideration, and its magnitude is JF. This trial solution

has an even more detailed physical basis. Here we will simply

state that it has the correct dimensions and seems plausible.

The problem is now to determine the constant c. We will

attempt to find a method of determining it which is as independent

of experiments as possible. Since we cannot do this entirely,
we require that the experimental support is independent of the

geometry under consideration, so that models derived from this

can also be transferred to other problem areas.

We obtain an equation for the determination of the constant

c by substituting the trial solution (3-32, 33) in the conserva-

tion equation for kinetic energy (3-31), in which the fine

structure Reynolds stresses occur in the product term. We now

assume that the turbulent flow under consideration is steady

in the statistical sense. This means that the time derivative

of the energy VE' vanishes when we take the time average. /35
The convective and diffusion terms also vanish for the additional

averaging over the entire flow volume, because no kinetic energy isi

transferred through the walls. It only remains to find the

difference between the production and the dissipation. This net

balance results in the equation for determining the constant c

(shown in the following for VeAi ):
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C0C -(C YJ ( ~JJ d(~ .j> (3-34)

We can approximately transform this equation as follows:

a _(3-35)

< +

(3-36)

Using the theory of isotropic turbulence and after the

experimental determination of the individual "constants" (the

Kolmogorov constant a), it is possible to establish a quantitative

relationship between the terms occurring in the denominator

of this equation and the average dissipation <E>. Finally,
the latter can be cancelled. The terms which must be calculated

are the time average of the kinetic energy of the fluctuation

motion in a mesh area as well as the time average of a difference

form involving the square of the deformation rate D2 , which is

defined by the following differential quotient:

D.. = 2 C 11 ~I (3-37)

These terms are also called correlations and will be calculated

in Chapter 4 and Appendix 2. Correlations are related to

relatively complicated integrals using a purely mathematical

method. In addition to the geometric factors, only the correla-

tions between the velocity components at two points occur. These

so-called two point correlations can be calculated for isotropic,

incompressible turbulence using kinematic relationships, if the

energy spectrum of the velocity fluctuations is known. Physical

models exist for the energy spectrum which lead to the statement
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that this spectrum has a universal form under some conditions / 36

(this is known as the Kolmogorov spectrum) and in which only

one experimental constant occurs. From measurements of this

constant under various conditions, one is left to the conclusion

that this is a universal constant. This means that the correla-

tions which occur in (3-35) and therefore the constant c can be

quantitatively determined. In the present paper, we have con-

tinued the development of the mathematical part of this computation

procedure used in earlier methods, so that we again did not use

meshes with the same side lengths. Instead, we used the actual

difference formulas.I

It may now be argued that the theory of isotropic turbulence

cannot be applied here, because the turbulent channel flow under

consideration here is very anisotropic and inhomogeneous. Here

we must apply the concept of local isotropy, as will be discussed

in Chapter 4.1. Nevertheless, trial solution (3-32) basically

contradicts the assumption of isotropic turbulence because in true

isotropic turbulence all components of the Reynolds stress tensor

Ju must vanish for i i j when the time average is taken.

Because of the fact that the time average of the velocity gradient

<X~u; f is not zero, the trial solution (3-32) gives values which

are different from zero fbr i,j = 1,3. For this reason, in

Chapter 5.2 we will develop a concept according to which the

fine structure Reynolds stresses is divided into its time average

(or period average. values, see below) and the deviations from it:

J . F7 < (3-38)

The theory of isotropic turbulence is only applied for sum term II

(the "locally isotropic part"). A special model will be applied

to sum term I'("inhomogeneous part"). This model is characterized

by the fact that it becomes the Prandtl mixing length model for the
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limiting case of very large meshes. For the other limiting case,

in which the meshes are very small, the Reynolds stresses

become zero.

In order not to be restricted to steady turbulent flows

in a statistical sense by using the time averages, when the

division is made according to (3-38), we will not use the actual

time averages but so-called period average values. The period

average value is the average value taken over those planes in

the flow channel in which the statistical properties of the

flow field are constant. According to Figure 1, these are

the x1-X 2 for the plate and the x - Y planes for the annulus.

The term "period average value" was selected because periodic

boundary conditions are prescribed (Chapter 7.1) in the /37

numerical model at the limits of these planes.

The model for the inhomogeneous part can also be determined

quantitatively, but not as elegantly as the model for the

locally isotropic part. Since the inhomogeneous part is only

very important in the vicinity of the wall, where the average

velocity profile has large gradients, simple assumptions can be

used here. In any case, this division represents a significant

advance over earlier models, in which local isotropic conditions

had to be assumed even in the immediate vicinity of the wall.

This is especially evident because the numerical results

(Chapter 10) correspond better to the measured values even for

a relatively large mesh, than do the numerical results ofl

Deardorff [29].

The details of these models will be presented in the follow-

ing chapters.
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4. LOCAL ISOTROPIC TURBULENCE AND CORRELATIONS OF SPACE-

AVERAGE FIELD VARIABLES
/38

We will establish some fundamentals for the quantitative

determination of the fine structure model using the theory of

isotropic turbulence. In order to apply this theory, it

must only be valid for local isotropic turbulence. In the

following we will define local isotropic conditions and we will

determine the range of existence by evaluating the corresponding

experimental results. Then two methods of calculating the

correlations of two space-average field variables will be

presented (i.e. time averages of products). The details of the

theory of isotropic turbulence are contained in Appendix 1

and the calculation of correlations is presented in Appendix 2.

4.1. Local Isotropic Conditions

4.1.1. Definition and Justification

A turbulent flow field is called "isotropic" if the

statistical averages of arbitrary variables which can be

derived from the velocity field and the pressure field (for

example(<ryui), are invariant with respect to rotation and

translation of the coordinate system. It is called "homogeneous"

if these averages are only invariant with respect to transla-

tions [6, 53, 115, 1341.

Channel flows are neither isotropic nor homogeneous.

Nevertheless, many results of the theory of isotropic turbulence

can be applied, if there is local isotropy or local homogenelity.

The concept of "local isotropy" was introduced by Kolmogorov [67].

The author, Deissler [26], for example,lspeaks of "local homo-

gene ity". In this paper we will use the following definitions
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for these terms:

A turbulent flow field u(x,t) is locally isotropic in the

vicinity having the diameter Lis o of a location x if

is isotropic for . - i Lis except for deviations

which can be ignored.

A similar requirement is that the Fourier transform

is invariant forII._ 1/L with respect to rotation and transla- / 39

tion of the wave number coordinate system. This definition is

well adapted for the experimental determination of Lis o

Local homogeneous conditions are therefore defined in a

similar way, by the requirement for invariance with respect to

translations alone. Local isotropic conditions can be shown to

exist in channel flows as follows. Channel flows are anisotropic

in their macroscopic structure because of the anisotropic boundary

conditions and the momentum sources (average pressure gradient

only acts in one direction). The "turbulence balls" which are

produced because of the macroscopically unstable flow have a

relatively large diameter, which is only slightly smaller than

the characteristic length of the channel geometry. Since for

large Reynolds numbers, the dissipation of the turbulent energy

only becomes effective for very small "turbulence ball" diameters,

the large turbulence balls must decay into smaller ones because

of the influence of the inertia forces. The pressure-velocity

correlations bring about an energy exchange between the velocity

fluctuations in various directions, as Rotta [1081 has shown,
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so that the motion of the turbulence balls becomes more isotropic

as the diameter is reduced. This is the physical reason for the

existence of local isotropic conditions.

4.1.2. Results of the Theorv ofIsotropic Turbulence

The following two results are important for the quantitative

determination of the fine structure model, and these results are

from the theory of isotropic turbulence. Appendix 1 contains a

detailed presentation.

a) The two-point correlations' RiJ f(e (-) I-)- (V ;.4)

which only depend on r for isotropic turbulence

Rj -r*) 4''. - , can be calculated using relationships

which are entirely kinematic in nature (i.e., they can be

derived from the isotropic condition and the continuity

equation), if the three-dimensional scalar spectrum

E(k) (defined in Appendix 1) is known; k is a scalar

wave number (Dimension: /length).

b) For the wave number range (inertial subrange) determined

by inertia forces

L 7 (4-3)
we can give a generally valid law for the energy

spectrum, which is called the Kolmogorov spectrum:

/3 63
E (A) = 6 (4-4)

ccI Kolmogorov constant (a 1.5 , see Table 3)

k scalar wave number (Dimension: I/length / 40

ZSX average energy dissipation

Lo,  macroscopic length scale

n = />) Kolmogorov length
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Using the relationships discussed under a), we can derive

the following from the Kolmogorov spectrum (see Appendix 1):

Rr, , _- -,) ( <(- > -r (4-5)

P, (< >J. (4- / i'6)

where (t I-/
for <?-r< Lo .

These correlations can also be calculated for other

spectra such as for example the Pao spectrum valid for k;fl

(see Appendix 1). The Kolmogorov-spectrum is advantageous here,

because it leads to analytical expressions for R...

In order for these results to be applicable for the quanti-

tative determination of the fine structure model, that is,lto

determine the local structure within the difference meshes having

the average edge length h, the following conditions must be satis-

fied:

a) The length Liso and L must at least be as large as h.

The Kolmogorov length n must be substantially smaller

than h.

b) a must be a known universal constant.

In Appendix 1 we give the experimental proof for the

fact that these conditions are satisfied. It therefore follows

that:
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For A4 4- and Reynolds number Re m 105l , the results
3 30 m

given above can be applied. The constant a can be assumed to

be given by the following formula based on many measurements

(also in a channel flow) and because of theoretical estimates,

to within an error of about +5%

a= 1.5

/41

4.2. Methods for Calculating Space Correlations

4.2.1. Definition and Assumption

In the following sections we will present two methods for

calculating correlations of the following type

R 21 ( < f ) (4-7)

Here j and 12 are two turbulent fields (velocities, pressures

or their derivatives). V1, V2 are space volumes used for

averaging, which can be one, two or three-dimensional. Their

centers are specified by x or x or _,respectively. The averaging

operations are linear and are defined by integrals of the follow-

ing type v

V' 1 (4-8)

As an example, the time average of the kinetic energy within a

mesh volume V is:

V- -

E- Z " ( v, o

It is assumed that l and 12 are 'locally isotropic within a

region whose diameter is given by the maximum separation between
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the points contained in the averaging volume V1 and the volume V 2.
In addition, we assume that the fields Ii and /12 are homogeneous

such that R(~ yl )does not depend on the position vector

x.

4.2.2. Method of Direct Integration

According to definitions (4-7, 8) we have:

Different integration variables were used for the two integra-

tions. Therefore we have the following transformation:

R N, I V41 I < (4-10)

The time averaging < > as well as the space averaging are

linear operations, so that they can be exchanged:

, , S R

where

, ( (..'4-121 / 4

For example, for YA ; 1 1 '*z U j,,E R f  wherel

R11 is given by (4-5). Using this method, Lilly calculatedl

the correlations k , for v=v2 == h -01 [80]. The disadvan-

tage of this method is that six-fold integrals must be (numerically)

evaluated for the three-dimensional volumes. This is very

laborious. In the following section we will demonstrate that the

number of independent integration variables can be cut in half,

as shown in [1361. This means that the computation times for

numerical evaluation of the integrals can be reduced from hours
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to seconds.

4.2.3. Volume CorrelationMethod

The space averages can be defined as follows according to

[136]
"W' - 00 K ( ) W (2) V (J] (4-13)

where

JSI k,( dV() 4 . (4-14)

Kl(s) is a (normalized) weighting function. The only condition

it must satisfy is at :1 ! it must go to zero such that the

integral given above will exist. In order for the average value

defined in this way to agree with (4-8), apparently we must have

o -0 V4 (4-15)

where the range V 1 is defined such that

I.,;2 1- . l i L'-- 3 . (4-16)

In addition to the simple weighting functions, it is possible

to define average values having weights which vary continuously

in space, using this concept. The corresponding correlations

can then be calculated. This is important in the evaluation of

measurements using the laser Doppler method [15], where K(s)

corresponds to the light intensity distribution.

If K2 (s) is defined in a way similar to Ki (s), we have:

R8 N<ff (4-17)
00
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After exchanginglthe (linear) averaging operations /43

we find:

/ V = SSS (4_18)

where RL according to (4-12).

Using the substitution x-~._ , ,(c)=CV) we find:

P% 0141Y, 1 V41 V,YI= Of X I(Y~ 3+Y) RV 4,,LCr- ) we fidvnd:CV(2'1 1-

Here Rl~j~12 is independent of y and it is possible to extract a

partial integral, the so-called volume correlation Y41(3 :

and we have:

V4~C() depends only on the geometry and the relative orientation

as a function dependent on the volumes V1 and V2 . Often this

can be calculated analytically. This means that only one integral

must be (numerically) evaluated, in which it is necessary to

integrate over one-half as many independent integration variables

as was the case for (4-11). In Section 2 we will calculate the

volume correlations which apply for rectangular volumes.

4.3. Results

In the following we will give the results for a few special

correlations, which follow from the preceding sections.

It is assumed that ui(x,t) is a turbulent velocity field,
which is locally isotropic in regions having the diameter L.1so
where Liso3 Xh holds (~x ma: maximum of the mesh edge length

&Y, Ax, M-11). The energy spectrum E(k) is assumed to be the same
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as the Kolmogorov spectrum (4-4), so that the correlations

R ij(r) apply for Irx' Liso according to (4-5,6). The grid is

assumed to be cartesian and equidistant, but the mesh edge lengths

~c are not all the same. The time increment At is negligibly

small.

Using the methods of Chapter 4.2, we calculate the follow-

ing variables:

/ 44

Remark to a). is the generalization of the volum (4-2)

1 72 r 3

c) c (K,'XF)'- (4-27)

Remark to a). K('F'js the generalization of the volume
average value of the kinetic energy of the fluctuation motion,

extended to n-dimensional volumes. We have the special cases
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Remarks to b). The quantities kD2, k = 1,2,3,4 are various

forms of the average square of the deformation rate, given in

different form. The notation was discussed in Chapter 3. The
V V! X

term -( -'.;- , calculated by Lilly [80] for=AZM9- i

is identical to D 2 . The approximation ( "Ju/-x - " _ _,

used by Lilly and the difficult calculation methods are avoided

here.

Remarks to c). The term FED corresponds to the average

energy dissipation used for the approximation FED. JF here is

the contribution of the mesh surface, the normal of which is

parallel to the coordinate x.; for example 1F = /AX~.x .

The details of the calculation are given in Appendix 1. The

results cannot be presented analytically, because the integrals

which occur must be evaluated numerically. Using the Fortran

Subprograms (E2, E3, D11, D12, D13, D 14, FED1 described in

Appendix 2), we find

/45

VW' v x . (4-28)

V /> -- - hA: (4-29)

4 C~l(4-3o)

> f (' h E1 3  (A",<I, X ) (4-31)

.4" D4 (4 ,x,l 4l.1i/) (4-32)
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,2 E ./ A 4/ D43, (A x,, ,./h,.,,A 1x.) (4-_34)

. <E> 1>1s C it (64VAA l Ax/) (4-35)

FgD /eV A YCx/AAX,/) (4-36)13 ,, -, (4-37)

S- " r() 9/20 . 803 (4-38)

- M ) / , .,r (4-39)

.p3(& p /4 .S -f C (4-40)

For special values of the edge lengths 6, 6k, 4X31

the numerical evaluation of the integrals gives the following:

'6X4: '4'yt ' 4:Ax :4A2
= 1 : 1 : 1 = 0.125:0.05:0.05

E 3 0.746 0.825

D 11 6.13 6.85

D 12 6.73 7.35

D 13 3.88 3.90

D 14 0.984 1.32

FEDI 5.30 5.39
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a well as /46

E2(1,1) = 0.6293 (4-42

(4-43
E2(0.125/h2,0.05/h2) = 0.6821 h2=(0.125.0.05)

Comparison: Lilly [80] gave the following results:

E3 (1,1,1) = 0.761 (4-44)

D11(1,i,I) = 7.66 (4-45)

The small deviations between (4-44) and the value of 0.746 can

be explained from (4-41) because of numerical inaccuracies,

which are understandable when evaluating six-fold integrals

numerically. The deviation of (4-45) from the value of 6.13

according to (4-41) can be attributed to Lilly's erroneous

assumption that <Cu, 5 . /N a , !7 .

We have the following general results: assuming local

isotropic conditions and for known correlations Rij (r) =

( (-fru-*.t ) we can calculate time average products of arbi-

trary space average velocities, using a purely formal procedure.

In the next chapter we will calculate a few such special

correlations. We will use the correlations (4-5, 6) which

follow from the Kolmogorov spectrum (4-4)..

Without changing the method, the variables of interest can

also be calculated for arbitrary spectra. However, if the

Kolmogorov spectrum is assumed, Rij can be calculated analyti-

cally, so that one additional numerical integration can be

dropped.
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5. FINE STRUCTURE MODEL /47

In this chapter we will give a justification for the

approximation for the area values of products of the area

average values referred to the fluctuation velocities, which are

called Reynolds stresses and which occur during the averaging

process of the momentum equation. In Cartesian coordinates, we

must approximate the following terms:

in cylindrical coordinates these are:

as well as the apparent stresses which are brought about because

of volume averaging of the Coriolis and centrifugal acceleration.

First we will determine the correlations which occur in

Cartesian coordinates. The terms which are valid for cylindrical

coordinates are then determined by simple analogies. First of

all we will investigate the trial solutions used by Deardorff

[29,33]. We will demonstrate a few of the deficiencies which will

be avoided in the new model.

5.1. Boussinesq Trial Solution for Volume Reynolds Stresses,

according to Smagorinsky, Lilly and Deardorff

5.1.1. Summary and Definition of the Trial Solution
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In Chapter 2 we discussed the fact that the Boussinesq

trial solution is suitable only for steady boundary layer flows

when applied to the Reynolds surface which occurred during the

time averaging process. It can be assumed that the unsteady

Reynolds stresses, which are produced in the averaging over small

volumes or areas, respectively, are more appropriately modeled by

a Boussinesq trial solution * because they have a smaller order

of magnitude. Lilly [81] described some of his experiences with

this in his older papers. These are two-dimensional simulations,

and because of this they do not result in the expected quasi-/random

and turbulent flow fields. The two-dimensional simulation of /48

the turbulent momentum transport and heat transport gave rather

good results according to Deardorff [27]. This may be due to the

fact that the temperature field represents an additional degree of

freedom here, which makes it possible for random fields to be pro-

duced. Leith [82] has suggested a special model which is suitable

for two-dimensional turbulence. The Boussinesq trial solution for

the Reynolds stresses caused by the turbulent fine structure was

first used by Smagorinsky [118] for the simulation of large space

atmospheric circulation. Lilly [80, 81] followed the ideas of

Smagorinsky and suggested the following trial solution:

2A It( 1 (5-1)

with the deformation velocity

2ij -- a (5-2)

and the turbulent viscosity

V- A )1 (5-3)

* This statement was already discussed in Chapter 3.5.

65



where c1 is determined, as discussed in Appendix 3.

We must consider the fact that, in contrast to the derivations

discussed in Chapter 3, Smagorinsky, Lilly and Deardorff considered

the following Reynolds stresses averaged over mesh volumes V (Edges

V V V- V-
£4, '14i UJ* - t W t4* (5-4)

No averaging over the time interval At is included here. Lilly

[80, 81] justifies the trial solution given above only for meshes

with equal side lengths

h A= .= (5-5)

Deardorff [29] transferred these derivations through meshes

which did not have equal sides (1-28) and assumed that the

characteristic mesh length h is given by

/3 (5-6)

The methods used by Smagorinsky [118] and Lilly [80, 81] for

calculating cl are shown in Appendix 3, as well as their

results and the expected values of Deardorff [29, 33]. In

addition, the calculation of cl using the methods discussed

here is described.

5.1.2. Simplifications,_Deficiencies and Contradictions

of the Theories Advanced So Far

The fine structure model as developed by Lilly and applied /49

by Deardorff is based on the following assumptions:

a) Locally isotropic (homogeneous) turbulence

b) The Kolmogorov spectrum is valid
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c) Use of a Boussinesq trial solution instead of integrating
V--

the conservation equations for UZiSlj'

d) V*, is calculated in a deterministic way from the

average velocity field, even though we only have a

statistical relationship [43].

e) Use of a conservation equation for E, which is derived us- i

ing another averaging operation than is used for

averaging the momentum equations. (See Chapter A 3.2.1)

f) /J f " (Equation (A3-15)

g) <')>zE , Equation (A3-16)

h) Re>>> 1 (molecular viscosity is ignored in the momentum

conservation equations by Deardorff).

i) A theory exists only for maos volumes having equal side

lengths.

j) Lilly's assumption of difference formulas for calculating

De. (A3-29) does not correspond to the difference formulas

used by Deardorff./

k) It is erroneously assumed that the same difference

formulas are valid for both factors in (A3-14); different

formulas according to (A3-44) should be used.

The model used by Deardorff [29] has the following deficiencies

and contradictions:

a) J0 is completely correlated in time with the

velocity field, even though the development of these
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Reynolds stresses is a dynamic process (more precisely,

described by the unsteady conservation Equation [1151).v-

Therefore, the magnitude of 4., only increases with

a time delay, if the square of the deformation velocity

increases.

b) The assumption (5-6) for h cannot apply, because according

to it, for example it also follows that h - 0, /50

whereas we have e V -

c) 4' j' is isotropic, even though an anisotropic grid is

used.

d) When the difference formulas (A3-33) are used for calcu-

lating (V- De.)1 , then the turbulent viscosity p will also

be positive according to (5-3) if the flow is laminar,

where = 0 should apply.

e) The fact that K- '7 40 contradicts the assumption of

locally isotropic turbulence, where all 0 '-0 for

i 3 j.

f) For ~Odj and ~AX" (for example), we have /09 . In

other words the model contradicts experience for these

limiting cases. Therefore it is questionable whether the

model is sufficiently accurate for finite s. .

g) The Kolmogorov spectrum must also apply in the prevailing

theory for very small wavelengths k, because <j

is obtained according to (A3-20) from an intregal over

k2 .E(k) over all wave numbers smaller than ' . Even
2

though the error will be small because of the factor k ,

we nevertheless see a weakness of the theory.
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V-
h) The concept of modeling of volume correlations u'v'

is erroneous in principle; according to Chapter 3,

area average values must be approximated.

In the following chapters we will derive an improved fine

structure model, which will avoid all of these weaknesses and most

of the assumptions.j Only assumptions a) to d) are required for

establishing the improved model,lbut later on their effects can be

partially decreased.

5.2. Improved Fine Structure Model in Cartesian Coordinates

5.2.1. Requirements for the Fine Structure Model and

Separation into Locally Isotropic and Inhomoge-

neous Parts

The channel flows under discussion are expressly inhomogeneous

and anisotropic turbulent flows. According to Appendix 1, /51

the assumption of local isotropy can be looked upon as being

valid for sufficiently high mesh numbers (KM>30). Nevertheless

it is desirable to have a model which will still be valid for

inhomogeneous flows, if the mesh number limits cannot be exceeded

sufficiently. Such a model must satisfy the following boundary

conditions.

a) The contribution of the Reynolds stresses <j!( -

calculated based on the assumption of locally isotropic

turbulence must as a consequence satisfy the following

condition which is characteristic for this assumption

(5-7)
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b) Considering the inhomogenelity (<4CCx)# const)f or the

entire model we must have

< ; >(5-8)

c) The turbulence model used should agree with experience

in the limiting case of very large meshes because it

then becomes the simpler and well known model. For

example it should be transformed into the Prandtl mix-

ing length model.

m-,L, - L2 I1 4, x 3  (5-9)

where L is given by (2-8).

d) For the opposite limiting case axt of =2).,), of course

(5-10)we should have (z I(5-10)

e) For\Joo , i.e. for laminar flow, J' should vanish.

In order to establish the fine structure model according to

these requirements, the turbulent flow field is divided into

-P
where is the "period average value" of y:

/52

The Reynold stresses are divided up in a similar way

(5-13)

70( ,~ )"
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The assumptions connected with local isotropy are only

invoked when the model for (-Ui') , is established. Therefore

are called the "locally isotropic" Reynolds stresses.

The residual terms are called the "inhomogeneous" Reynolds

stresses. In the following we will first delrive a model for

calculating the locally isotropic part and then derive a model

for the inhomogeneous part.

5.2.2._ Model for Locally Isotropic Part of the Reynolds

Stresses

In this section we will derive a model for ( '1 ' )" accord-

ing to (5-13).

5.2.2.1. Assumptions for the Determination of

The following assumptions are made for deriving the locally

isotropic fine structure model. Some of them will be restricted

completely in Chapter 5.2.2.5.

a) The turbulence is assumed to be locally isotropic

over a region with a diameter of approximately 3 mesh

edge lengths h (see definition in Chapter 4.1).

b) The turbulence has an energy spectrum E(k), which is

given by the Kolmogorov spectrum (4-4) for wave numbers

k >

c) The Reynolds stresses can be described using an appro-

priate trial solution similar to the Boussinesq trial

solution for the Reynolds stresses which occur during the

time averaging. This trial solution will be justified

in Chapter 5.2.2.3.
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d) The Reynolds stresses can be determined deterministically

from the average velocity field and the kinetic energy of

the fluctuation motion. (See Chapter 5.2.2.5.3).

e) Since triple correlations cannot be calculated with

the present theory *, we will assume the following

approximations:

'((F ijF)42  k I (5-1)4)

cc (5-15)

/53
where

*>) (5-16)

(see Chapter 5.2.2.5.3).

f) The grid is assumed to be equidistant and Cartesian,

but the mesh edge lengths AX. all do not have to be equal.

g) The averaging over A t can be ignored (see Chapter

5.2.2.5.1).

5.2.2.2. Basic Equation for Locally _Isotropic

Turbulence

In this section we will show that the local fluctuation

field for locally isotropic turbulence essentially obeys the same

basic equations as does the entire flow field, and that there are

no additional terms which have to be considered which would describe

* If additional experiments are not considered.

** As for the validity of these approximations, see Chapter
10.4.6.
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the interaction between the fluctuation field and the total flow

field.

We will divide the fields u. and p into the periodic average

values L,2 I P0) and the fluctuations ui"., p according to

(5-11). Then we will form the periodic average value of the mass

and momentum conservation equations and we obtain:

0 --- (5-17)

N ( (5-18)

7- V -> 14j >

If we subtract these average equations from the initial equations

we find ( ,1

" " . ,(5-19)

0 P< ,, a\. " o'U (5-20 )

Because of the assumption of local isotropy, it is possible to

ignore the following variables in regions having the diameter Liso

[103]: /54

'9x. (5-21)

If in addition the observer is moving at the velocity .>j ,

then the last term in (5-20) can be ignored. This assumption is

permissible because it only alffects the boundary conditions (see

Chapter 7.2), which are inconsequential within the region of

local isotropy. This is why the conservation equations for

momentum and mass of the fluctuation field u.i", p" reduce to the

basic equations (with =0 ). Consequently, all of thex
derived relationships, especially the conservation equation for
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E- (3-31) are valid, if ui,p is replaced everywhere by ui",p"
and we set P0 .

In the following subchapters of this section 5.2.2, we

will write ui,p in place of u.i , p.

5.2.2.3._ Justification of the Improved Boussinesq_

Trial Solution

5.2.2.3.1. Model Concept and Trial Solution

In Chapter 3.3 we showed that by averaging the momentum

conservation equations, area average values of velocity fluctua-

tion products J, are found instead of volume average values.

In this section we will discuss the model for which a Boussinesqi

trial solution can be defined in a suitable way. For this we will

consider in particular with the notations of the following

sketch

3 ;K (2 - d i r e c tio n )l

(1l-direction)

ArP (AX -I~X ) (1-areajV

The terms ,jI apparently were produced by averaging of

u1 *u2 . The product ul'U 2 on the one hand describes the

convective transport of momentum (per unit of mass) in the

1-direction because of convection in the 2-direction,jand at the

same time,lthe momentum in the 2-direction because of convection

in the 1-direction. The first point of view is applicable

for the 1-component of the momentum conservation equations and

the second point of view is valid for the 2-component. The area
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4t-I
average value of ul'U 2 over the 1-area, that is vA , only

occurs in the second equation component according to (3-14). The

product of the fluctuation velocities averaged over the 1-area /55

A- - A- (5-22)

is therefore the convective transport of the second momentum

component in the 1-direction because of the fluctuation motion.

, , is therefore to be interpreted as the Reynolds stresses

which apply at the 1-area (per unit of mass) in the 2-direction.

Only the momentum transport produced by the fluctuation motion

has to be considered here because A is explicitly described

by the average equations.

This part of the convective momentum transport can be

looked upon as the momentum transport due to small turbulence

balls. These turbulence balls must be so small that their motion

does not have any contribution to the average velocities, because

their motion otherwise would be described by the average velocity

fields and would be described by the average equations. The

cross-sectional area of the turbulence balls must therefore be

small so that at least two approximately equally large turbulence

balls having opposing fluctuation direction will have room in the

1-area; Their diameter 1~ therefore satisfies the condition

Z (5-23)

On the other hand, 1e2 / 1F, does not hold, because the fraction

of kinetic energy of the turbulence balls increases greatly with

decreasing diameter according to assumption b (Kolmogorov

spectrum). The momentum magnitude transported by these turbulence

balls can be assumed to be proportional to (Ie)n where n is an
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exponent which must be determined.

According to the interpretation given above of the meaning

of It ,, we must ask ourselves what are the contributions of

the motions of turbulence balls in the 1 and 2-directions to the

convection of the second momentum component. Any motion of

the balls in the 1-direction results in a momentum transport in

the 2-direction, which in the first approximation is proportional

to the gradient of the velocity u2 in the 1-direction. This is

made clear by the following sketch:

XkXA

/56
Any motion of the ball with a positive u1 ' results in a

negative momentum transport with a positive gradient d. /j and

therefore

1---- em d 14.z (5-24)

with a positive proportionality factor. Any motion of the small

turbulence balls in the 2-direction at u2 ' results in a momentum

transport in the 2-direction, which again in the first approxi-

mation is proportional to the gradient of the velocity ul in the

2-direction, and the same sign convections as used above apply:

76



e'v' ~ - 1 9'L a/x, (5-25)

According to assumption a) (local isotropy) we may set:

'E =(jiL [- (5-26)

If the contributions of the fluctuation components are selected

and if the unknown gradients are replaced by the corresponding

difference quotients and if we consider that we must have

4 ------
V, = "t'I'Z ,' (5-27)

it follows that:

4-
'14 ( (pU 2 (5-28)

Here we have set the undetermined exponent n equal to one, because

then the proportionality factor c2 is a dimensionless positive
constant. When generalized to other subscripts, we have:

j - j; -, J 7. -fl - 4 e,, k- -- (5-29)

The last sum term was added according to [53, p. 21], in order to
have a positive contribution of o.. 't'., in spite of the fact that

The analogy to the Newton material law becomes clear if we define /57
the "turbulent kinematic viscosity" as follows:

S( P )", (5-31)
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5.2.2.3.2. Calculation of the Constant c2

An equation for determining the constant c2 is obtained by

substituting the trial solution (5-29) into the conservation

equation for the kinetic energy of the fluctuation velocities

within a volume element (3-31):

-t - 6 - V s' -Conv.k D,'# (5-32)

where

and Clonv. or Diff. are the abbreviations for the terms II and

IV of Equation (3-31) which are not of interest here. Equation

(5-29) is substituted for The additional term 4

vanishes because of (5-30.). If we take the time average, then

we find the following for stationary turbulence:

- <ConvD+ < DI'>.
The two last sum terms vanish because of the assumption

of homogeneous turbulence. They therefore also vanish for a

channel flow, if in addition to the time averaging we also

average over the entire channel, because the kinetic energy

and its gradient vanish at the wall. Therefore we have the

following equation for determining c2:

C, > (5-35)

The evaluation of the denominator can only be performed if we

set: < .

S(5-36)
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According to assumption e) we have set a =1i. This assumption

is necessary because with the present theory, the correlation of

triple velocities which occur cannot be calculated. In contrast

to the assumption used by Deardorff (A3-15), with only a small /58

degree of error we can assume that ( iJ 2I is only slightly

correlated with the square of the deformation but because of

< (, ,),> > < (5-37)

we should have 1 >f4 .

Thus c2 follows from

C - (5-38)

Considering the results of Chapter 4.3 (4-32) and (4-36)

we find:

-j "f'.A F D ( p,/A/M / (5-39)

where h (= . AX. L

= (V 3  3[, "( 5 -40)

For od= 1,5, 0'= 1 we find the following numerical results:

6X3 ? = 0. 12S: . 04 0.4' i(5-41 )
S 1 (I,-.o ) 0. -f9

For very high Reynolds numbers, the correction term c

can be ignored. For finite Reynolds numbers, cv as well as

h and <e> are independent of position. Because of the small

order of magnitude, <e> can be approximated as follows without

a large error (see 1-36)):

le (i >> ( 5 -J4 2 )
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and therefore

5.2.2.4._ Calculation of the Kinetic Energy / 59

Starting with the exact Equation (3-31) (in which, ccording

to Chapter 5.2.2.2.,|u i and u.i" appear), we assume the following

approximate equation:

- ' __ __ L.-. (5-44)

The Roman Numerals I to V here refer to the terms as in

Chapter 3.4. We assume the following for P and S, the production

and sink terms:

= c h ( i (5-45)

ca cz) - V 1 (5-46)

D2 is a difference approximation for the square of the deforma-

tion velocity D ,

t- = 4 (D," e).
"" ' " (5-47)

and its exact form is to be discussed later on.

By comparing the approximation and the exact equation,

we find the following equations for determining the constants

c3' c4 , c5 , .C8:

C3  (5-48)

C ''- , j (5-49)

S > /< - (5-50)
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' ( (;- (d.sy- j). > (5-51)

Such an equation cannot be given for determining the

constant c . It would be of no value because the correlations

which occur in it could not be calculated because their time

averages vanish. Since here the energy always occurs as an area

average, we also set

C S . (5-52)

The constant c7 cannot be determined from the theory.

Its value should lie in the following range, as does the

value for the time average kinetic energy (constant a3 in Table 1)

0 4 Cx K 4

According to Chapter 2.6, the constants in the energy

diffusion terms do not play an important role. The value

c7 = 0.3 (5.53)

has proven itself in practical calculations (see Chapter 10). /60

In order to calculate Jq . in Equation (5-49), the trial

solution (5-29) is substituted

C4  cF'F)+ 6,j- jQ ' (5-54)

In the equations for c3 and c4 only triple correlations

occur, which cannot be calculated with the present theory.

Therefore, according to assumption e), we make the following

simplifications:

3 - (5-55)
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A correction (erfactor)is not necessary for c4 , because

approximately the same error occurs in the numerator as well as

the denominator.

Two difference forms have been suggested for D2:

This formula corresponds to the formula derived by Deardorff

(Equation A3-36). It has the disadvantage that for the quantita-

tive determination of 4' , we have an integral of the forml

0

just like in Chapter A3.2.2. This means that it is necessary

to integrate over small wavelengths, and E(k) does not agree

with the assumed Kolmogorov spectrum.

However, if we subtract a term corresponding to the square

of the deformation velocity from 3D 
2 , which is formed from

differences over twice as many mesh distances and which is

therefore determined by an integral having the form

then one can avoid the integration over the wave numbers k<( I.

In this case the assumption b) mentioned in Chapter 5.2.2.1.

is sufficient. Such a formula is the following:

)b /61

- (5-58)

• See Appendix 7
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Another advantage of this formula (it would also be valuable

in (5-3)) is the fact that the kinetic fluctuation energy

is uncoupled more from processes which occur at small wave

numbers just like in physics. However, the large numerical effort

is one disadvantage of this formula. The ratio < /<3> can be

estimated as follows:
6/1,

and therefore with E(k) = i( jJ- we have:

SD,./<z>D.) -- ( /" o. Co0 (5-60)

According to Appendix 2, for X : a -.A,:4: 4  the exact

calculation gives:

4D >/< 3?DL> O.237 (5-61)

This shows that the approximation given in Chapter A3.2.2

can lead to large errors.

Using results of Chapter 4.3, these constants can be

quantitatively determined as follows:

(5-62)

[ E3 ( /,k/,.#,/4)J '.A)/, (A-*/4,Xa/4r6*,D4)

A= for 3D %

A I for DL

Cc_ I' ~(5-64)
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.= c C- cC o. (5-65)

C DI d /"k',L//,A) (5-66) /62

= 3 for 3 D

-= for D

We obtain the following numerical values for /.

C A ~: f 4:.Vr* 3= .Zr:O.oS:O.o

3  1.022 0.884

C4 3 1.6_3o1 . 1.57 • c,

C4  4 6.87 -cZ 4.80 • z

1c 0.8283 0.6135 (5.67)

25 0.8283 0.9147

3c5  0.8283 0.9147

c8 3 1.573 1.747

c8  4 6.63 5.344
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For known E' , the values of the area average values E'

required in (5-29), are calculated from

ij " CY Ef(5-68)

We obtain the following from the time average of the turbulent

viscosity , :

7j < JF /, / (5-69)

S14> 43/(because of 4-29)

i.e., the turbulent viscosity obtained from this model goes to

zero faster than the mesh constant h for given dissipation

(corresponding to the applied pressure).

It can also be seen that for the meshes used by Deardorff

[29], the turbulent viscosities have the following ratios:

14 ?A / ( C F)C : (t;)w : I693:.3 \ (5-70)

and therefore, we have expressed anisotropy, which has not yet

been considered in papers up to the present.

5.2.2.5 Correction Factors

In order to limit the effects of assumptions e), g) in /63

Chapter 5.2.2.1, corrections will be introduced. Correction

factors are suggested for assumptions b), d).
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5.2.2.5.1. Consideration of the Time

Averaging over At (Assumption_g)

In Chapter 3.1, averaging operations are defined as an

average over mesh areas or mesh volumes, as well as over a time

interval At. This is required because for the time integration

we set

which is obtained by a formal averaging over At. In this

Chapter 5 we have not yet considered the fact that the Reynolds

stresses J .I contain averages over At as well as over the

j-area. This will be considered by means of the following

correction factor Cj

This means that the complete trial solution is as follows:

SC 1 (5-72)

In order to determine Jc? according to the Taylor hypothesis

[132, 1151, it is assumed that the time axis can be transformed

into a space coordinate according to xl = t'  u  . Therefore,

,' 0must be determined for the three-dimensional volume with the

edge lengths d4d,~4  , (f f¢J. From the results of Chapter

4 we find

X86 (5-73)
G2 (&Cx,,Ak)4)
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For the problem calculated by Deardorff [29] with

C1 4,=O.4,f A -o.o§ A=O.o."t= 0.00/ -,t,=.t8

we find:

c --.. C= 4.0 / c .0 (5-74)

The effect of time averaging is therefore not negligible,

and becomes more important the greater the ratio At'F •

/64.
The correction factor therefore brings about a small

reduction in the anisotropy of j according to (5-70).

5.2.2.5.2. Consideration of the Deviations

of the True EnergySpectrum

from the Kolmogorov Spectrum

(Assumption b)

According to (A3-20) and (A3-37) deviations of the true

spectrum at wave numbers k 4/Ibring about errors in the calcu-

lated mean squares of the deformation velocities, as well as

errors in the calculated average kinetic energies for k>'-' . In

the first case, one would have to apply correction factors having

the form

_ A(kc//,

and in the second case they would have to be

f Ega d (5-76)

where Ek(k) is the Kolmogorov spectrum according to (4-4).

Possible generalized forms of E(k), which forl (7i/,'become

the asymptote k4 according to (Al-37) and for k> / they become

Pao spectrum Ep (Al-34), or as follows:
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(A)= - )e (A) (5-77)

or 4/

E (A) (L L) (A (5-78)

L is a length to be determined experimentally. Since no data

about it are known, the corrections will not be investigated for

In the following we will estimate above which Reynolds
numbers it is necessary to consider the Pao spectrum. From
(5-76, Al-34) it follows that:1

0

If according to (1-36) we set LE>=4%p, and if we set
X 2, £,1o.o according to [18] (corresponding to the minimum

Axi for Deardorff [29]) it follows that

ce x exr[- v/C.c -'J / .- -3. for Y6 -.. d, (5-80)

/65
In order for this .correction factor ce to have an influence

which is smaller than 1% in the calculation of the kinetic energy,
we must have

V 4 ' ./o -  
(5-81)

Because of (1-14) the Reynolds number Rem must therefore be
greater than 3*10. In other words, the turbulence model used

* Figure 22 shows that the Kolmogorov spectrum already applies
for the coarse structure. Therefore it seems justified toignore these correction factors.
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which assumes the existence of the Kolmogorov spectrum, applies

for Re - 105 . For Reynolds numbers, smallerjthan 105, the Pao

spectrum must be considered. This assumption agrees with the

results of Chapter 4.1.2.

5.2.2.5.3. Consideration of the Random Nature

(Assumption d)

As mentioned by Fox-Lilly [43], the model described up to

the present is a deterministic model according to assumption d)

(Chapter 5.2.2.1). The fine structure model used can only agree

with reality on a statistical average basis, because true turbulence

is random in nature. Effects such as the time span over which the

prediction of the turbulent motion is possible for given initial

conditions at discrete points within a prescribed statistical

error [85] can therefore not be investigated. In order to arti-

ficially introduce a random effect into the model, one could

in addition introduce a factor in (5-29) using a random generator

and having an average value of one. The problem here consists of

determining the fluctuation with possible correlations to the

viscosities in adjacent meshes. Up to the present, the

problem has not been investigated and could not be solved within

this paper either. However, by means of an additional integration

of the energy equation, the model used here contains an additional

degree of freedom, so that it could be assumed that the "deter-

ministic degree" is reduced somewhat. In this connection, we
should also mention the question of the effects of averaging

the kinetic energies ' over four meshes, in order to find

the relevant value at the corner point of the four meshes. This

is required for calculating the viscosity )u at this location.

The model does not answer the question either.
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5.2.2.5.4. Consideration of the Numerically

Determined Constants

(Assumption e)

According to Assumption e) (Chapter 5.2.2.1), the constants

i up to the present have been assumed to be equal to one. This

assumption can be restricted afterwards by determining the values

of the constants defined by (5-14, 15) from the numerical solu-

tion. After approximating f by LJ and approximation of the /66

squares of the deformation velocity which occur in the definitions

by (5-57), '! and i' were calculated. In addition, according

to the Deardorff model, the correction factor to be introduced

(see Section A 3.5) was determined

ACr ' L e ((5-82)

The results will be reported on in Chapter 10.4.6.

5.2.3. Model for the Inhomogeneous Part of the Fine

Structure and SummarL

5.2.3.1. Model for the Inhomogeneous Part*

In this section, the trial solution for <'Ut) >,must be

explained. For the channel flow under consideration we have

t o for ,'3 4 3
1  or (5-83)

In addition we have

4- (5-84)

* According to definitions in Chapter 5.2.1.
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Therefore, only a model is required for 3 > I . For this pur-

pose we will use a Boussinesq trial solution according to

Chapter 5.2.2.3.1.:

<' -- , c(, (5-85)

The turbulent viscosity / is calculated according to the

Prandtl mixing length model

-with X' i</4 (5-86)

with

A-. (5-87)

and L according to the generalization of the formula of van Driest

[2-8]:

L= .. ' 1-exp-e' Re' ' j /A,/A 1\ (5-88)

The generalization consists here in the use of

Re' = c,&oW (f- ReCrit I ) (5-89)

where RecIri t is the critical Reynolds number Re below which

the flow is laminar:

Re RecritCriti (5-90)
ecrit . /67

Therefore ~' satisfies the requirements b, c, d, e

according to Chapter 5.2.1, because

) < P91
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c) e , . - 0-

because L according
to (5-88)

6x 3 -o/ because (5-88)

e) .4 ')"> = 0 for - Re Rl because (5-88,89)

The only constant which had to be determined is C10. This

constant, according to (5-87) is apparently determined by the
3 2fact that for c F= L we have10

Swor i

In other words, if the mesh area 3F is equal to L2/Cl , the

entire convective momentum transport occurs within the fine

structure. The mesh area F must then be large enough so that

there is no correlation between the velocities at extremely

situated points of the surface. From the measurements of Comte-

Bellot [18], the area 3F in the middle of a channel in the flow

direction must approximately have the length 1.6 and the length

0.8 (dimensionless) in the azimuth direction. If according to

(2-'7) we assume the value of 0.1 for L, it follows that i

.o 0 - .OA (5-91)

Of course this estimation is very inaccurate. However, there

is no other more accurate determination method available, and we

will therefore use this value in calculations. The constant can
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easily be changed because it is an input variable for the program

used. The value given above has been found to be satisfactory

(see Chapter 10). In order to obtain the total kinetic energy

contained in the fine structure, for evaluation purposes of the

kinetic energy calculated according to (5-44), it is necessary

to add a part which corresponds to this inhomogeneous shear

stress contribution. /68

According to (2-9) we set

-uL L$ (5-92)

where al=1l according to [91, 113] (see Table 1). This approxi-

mation also seems somewhat daring but its error is inconse-

quential for the numerical integration and during the evaluation

can also be tolerated because of

L1  o0.oA 3p 1 4 ,

5.2.3.2. Summary of the Locally_Isotr2pic and

Inhomogeneous Parts

If we add the locally isotropic part and the inhomogeneous

part, we find the following results

(5-93)

where,/, given by (5-31) and / is given by (5-86); the values
of '< -t'>jand . are not important for the integration.

Because of (<V,>. -. olwe can also write

- - 3 j .. (15.94)L
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3 '1 -1- /# UX '(5-95)

5.2.4. InvarianceProperties of theTrial Solution

In order for turbulence models not to contradict the basic

equations, we must satisfy the following invariance require-

ments [34].

1) The modeled terms must have the same tensor and

symmetry properties as the original term;

2) They must have the correct dimensions;

3) They must be invariant with respect to the Galileo

transformation ('displacement of the coordinate system).

Equation (5-93) satisfies (Requirement 1), because there /69

is a second order tensor on both sides which is symmetric with

respect to the subscripts. The second requirement is apparently

also satisfied. Since only velocity differences occur on the

right side, the third requirement is also satisfied. This

invariance property makes it possible to carry out a transfer

to cylindrical coordinates, if the corresponding components of

the deformation velocities are substituted on the right side.

At first glance, it may appear questionable whether the

inequality

is permissible. The following will show that this is indeed the

case:
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We form the time average ~t of u .u. and then take the

average over an i or a j-area:

J2% <

For homogeneous turbulence we have:

, I.. 1. -

If the diameter of the i-surface now goes to zero and the diameter

of the j-surface goes to infinity, we have

and

S>

Consequently we have. <<i' i F)- O r -

On the other hand, using the Boltzmann axiom [119], the

limit transition to infinitesimal measures requires that

because then both terms go to zero.

Therefore, the model used here satisfies the required

invariance conditions.

5.2.5. Transfer to Cylindrical Coordinates and Non- /70

Equidistant Meshes

5.2.5.1. Reynolds Stresses
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In cylindrical coordinates, the formulas for the Reynolds

stresses averaged over the areas are given by the same formulas

as for Cartesian coordinates, if the tensor of the deformation

velocities De t( is replaced by the corresponding one

for cylindrical coordinates [531:

9------ v -----We will substitute the following forthe two terms

where 7/ =  *E' "i i (5-99)

The deformation velocity which determines the inhomogeneous

part is

The constant c2 is calculated just like for the Cartesian meshusing the edge lengths ' Ax 'ta :

5.2.5.2. Energy Calculation

The following equation is used to calculate the kinetic

energy E'
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- j

/71

P, S are calculated using appropriate formulas for D2 , just
like in the case of Cartesian coordinates using Equation 5-96) ".

The constants and areas are characterized by the subscripts
x,tf," and are calculated just like for a corresponding Cartesian

mesh with the edges ,,ad and the subscripts 1, 2, 3 are

used instead of x, ,rF

5.2.5.3. Transition to Non-Equidistant Meshes

Slightly modified difference formulas are used for non-

equidistant meshes, and this will be discussed in the following

chapter. The calculation of the constants is done according to

the methods derived, for Cartesian, equidistant meshes. The

characteristic mesh edge lengths used are the average edge

lengths which apply with respect to the center of the mesh under

consideration. This is permissible if the mesh edge lengths vary

only slightly.

* See Appendix 7
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6. DIFFERENCE METHODS /72

According to the preceding chapter, the nonlinear terms

remain undetermined during the integration of the basic equations

over the mesh volumes according to Chapter 3. They are approxi-

mated by a fine structure model. Now we must also approximate the

undetermined linear quantities. The result is a close system of

different formulas which can be integrated for suitable boundary

and initial conditions using a numerical method.

6.1. Linear Difference Approximation

Two types of linear quantities must be approximated:

a) Area and volume average values of velocities and

pressures which do not agree with the variables already

stored with the grid;

b) Partial derivatives of velocities (only first deriva-

tives) and we have two types:

b 1) (Derivative perpenducular to the
S4A | averaging area)

b 2) -1 (Derivative parallel to the

averaging area)

The quantities given by a) are approximated by arithmetic

averaging of adjacent variables known in the grid. Non-equi-

distant meshes are considered as well as the variation of the

mesh sizes with radius using appropriate weighting factors in

the case of cylindrical coordinates. The notation used is

98



defined by

7:Z (6-1)

The quantity bl) can be approximated without any truncation

error of order Ax 2 without any problems by means of

A-----

because the derivative according to (3-13) is approximated by the

point half-way between two mesh surfaces. /73

As far as b2) is concerned, according to the following sketch,

the derivative of a function y(x) must be determined at a point A,

and only the average values within the adjacent intervals of y

are known.

If we now consider a Taylor series expansion and according to

the stationary laminar solution if we assume that y(x) is given

by a parabola having the form

y = a x2 + bx + c

as a first approximation (coordinate origin x in the center of

the central mesh) then the coefficients a, b, c can be calculated
for given .,,-# ( as well as the derivatives /x(,,I . The

asymmetric form of yl-is selected and not for y2
because the derivative is always calculated in pairs for x1/2 and
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S. We then obtain the following difference approximation:

ax c)=, t * o (6-2)

where

0 ( x -2K 2

"12 C 26 4 rd- - .92Ax}/

For equidistant meshes,.AdX -*=jwe have al= =-

a=/ i.e., these developments only apply for nonequidistant

meshes; however, they are important here. The author does not

know of any similar developments from the literature.

6.2. Difference Formulas / 74

Considering the "one-dimensional" geometries used, non-

equidistant- meshes are only appropriate in the radial direction.

This will be considered in the following formulas. The difference

formulas are only given for cylindrical coordinates. The corres-

ponding formulas for Cartesian coordinates are found by substi-

tuting the value 1 for the radii r in terms in which r does not

occur in both the numerator and denominator as a pair. In terms

where the radius r occurs more frequently in the denominator than

in the numerator, r is set equal to zero (corresponding to the

limit transition r I )-
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The velocities which occur are area averages; the averaging

bar is therefore omitted in the following. The symbol p refers

to the apparent turbulent pressure fluctuations:

I - 21 3 (6-3)

6.2.1. Difference Formulas for-Momentum

The difference formulas for momentum are:

' - 4 Ir -r ?- 4

+ L - F Cfr ZJ Co= fc3 i'j t -j, i~ 5~ 6u

[Crx C&+,,, h' +>'-, C ,,., 00 v + , fr-z -0t.J--a

rlO1

1014

I-7a~Cr 6 xrkx~ c3a y~ Ir rA-

6t Of 10 6 r~

x + AT (Cr P ( r4,1 C~ur6r 3~~-r I

+ & r Ox + r Cr

+ 4f -r VJ - V" (6-4)

+ a;'M + R/ + 9 U j V+V
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The superscripts no, nl, n2 refer to time steps. For

the first time step n=l we have no=l, nl=2, n2=2 and for the /7

following N time steps n = 2,3,.., N we have no=n-l, n1 - n,n2 =

n+l. After N time steps the solutions at the time N+l are averaged

using a solution which is found from no=nl=N, n2 = N+l. After

this, one starts again just like for nv 1. This so-called leapfrog-

midpoint or jump method has an accuracy of order At 2 for the

convective terms except for the first and last step. It has been

used many times [29, 33, 42, 79, 141], because it avoids numerical

damping in contrast to the Euler one-step method [73, 79], for

example. The absence of the numerical damping, however, can lead

to 2Atioscillations because of the nonlinearities, which are damped

by averaging with respect to N steps. The convection terms and

the diffusion terms which result for i = const correspond to the

difference formulas of Williams [141] for equidistant meshes.

The corresponding formulas for p 3 const and non-equidistant

meshes have not been formulated up to the present.

It is now possible to use different formulas having a higher

degree of accuracy in time because of the difficult calculation

of the pressure and the associated enlarged storage requirement.

It does not seem to be appropriate to use more accurate difference

formulas in space, such as for example one suggested by Fromm

[41], for the turbulent flow case. Apparently the greatest errors

are produced by the fine structure model. In addition, the

boundary conditions become much more complicated.

6..2.2. Difference Formulas for the Pressure p_and the

Auxiliary Potential i

The pressure required in (6-4) is in principle to be

calculated according to Chapter 1.4.2 from a Poisson equation with

inhomogeneous boundary conditions. Since these inhomogeneous

boundary conditions have a disturbing effect and also the
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calculation of the source term q according to (1-20) is

laborious and it must be assumed that the velocity field for the

time steps no and nl exactly satisfies the continuity equation [54,

or that errors in the adherence to the continuity equation can

increase from one time step to another, we will therefore not

first calculate the pressure p itself. Instead we will calcu-

late an auxiliary potential #f which will remove all these

deficiencies. The method used here was suggested by Chorin [211,

and was used by Amsden-Harlow [31. Compared with the method used

by Deardorff, Williams, etc. [29, 141, 541, this represents an

improvement so far as accuracy and simplicity are concerned.

Compared with the methods suggested in [3, 371, it becomes possible

to calculate the pressure directly without solving an additional

Poisson equation. /76

First of all a velocity field "Y for a new point in time

is calculated using formulasf(6-4) but without considering the

pressure. The velocity component perpendicular to the wall is

set equal to zero for the new time step corresponding to the exact

wall conditions (1-5):

So (6-5)

(6t'
This velocity field a / is,of course, not the correct one,

because the pressure was not considered. However, because of

the omitted pressure terms, this solution can only differ by
n2

the gradient of a potential from the correct solution u .

Therefore, we set

-_ y. (6-6)

Here , is an auxiliary potential and grad is the difference

form of the gradient operator:

rad r - (6-7)
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The direct velocity field un 2 must satisfy the continuity equation

(1-8)
-- of, x (o 0 (6-8)

The potential 7Vw is therefore the solution of the following

Poisson equation

O~ fi - = " I (6-9)

Because of (6-5) we have the homogeneous Neumann boundary condi-

tions

Sy=' Owall (6-10)

This system of equations can be directly solved using the

series expansion described in Section 4 and using the fast

Fourier transformation (FFT) in a very effective manner. Then

the velocity fields will satisfy the continuity equation after

every time step up to a numerical rounding error. This is also

true if the initial condition does not satisfy the continuity

equation. Corrections suggested by Hirt-Harlow [56] and used in

[29, 141], are superfluous here. In the following we will /77

show that the pressure p can be simply calculated as follows

without any additional solution of a special Poisson equation:

For all meshes inside (6-11)
S(.-.kO) t of the flow space

- 7 -wall^ + n-laZ wall At the walls (6-12)

(+for r = R1; -for r = R2)

Here ;/rdt)wll41 is the radial acceleration at the wall which is\

obtained when the pressure is not considered. '/wall is the value ofi

the auxiliary potential at the mesh adjacent to the wall. For

proof of this, we consider the equation for determining the
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pressure, which is given as follows according to (1-19) in

difference form:

with the boundary condition (6-13)

Iwall (6-14)g*a - - wall •

Because of div , we have

- .l-1 kt' t i i (6-15)

for all meshes which are not adjacent to the wall. On the

other hand for the wall meshesdiv12does not obtain'the contri-

bution to the divergence which is a consequence 'of a/Y, because

according to (6-5) "t was set equal to the value which was a

consequence of the wall condition. Therefore in this case we

have

at t'a .i M2 &O1Lo 00, k (6-16)

and in the second divergence operator the field values located

in the interior of the flow are all equal to zero. If we now

form the divergence of (6-14) in a corresponding way and if we

subtract this from (6-13, 16), we find:

t - ;-n;T) ". (6-17)
div =- (2-O) t

=--wall\ (6-18)

With pl = p inside of all the meshes and

p1 = p T A I at the walls. (6-19)
Pl + Z at wall\

Because of the similiarty of the Equations (6-17,18) and

(6-9, 10) and the linearity of the operator div grad, we find the

result which has to be proved (6-11, 12). See Chapter 7.7 for

the calculation of at //wa/ll\
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6.2.3. Difference Form of the Energy Equation

In the numerical integration of the energy Elquation (5-44, 100)

we must determine that the energy j7 is always larger (or equal / 78

for laminar flow) than zero. For this reason we will integrate

over time using the single step method. The convective terms

are calculated with so-called "upwind", "down stream" or "corner

cell" difference Formulas [49, 57, 72, 73, 123]:

'L d y f 'l4CA - A) X/ o (6-20)
(y Or t 1 - CA-,

These formulas insure that the new value of y at the next time step

will not be negative if only the convection is considered, unless

the initial field is non-negative everywhere [123]. As linear

stability analysis can show (see Section 6), it is not permissible

to use the jump method for the time integration here because it

would always be unstable. Therefore we will use the Euler method

here.

Negative values of the energy field can occur under some

conditions if the energy dissipation was calculated according

to

(Vl ~ ~-,YA L4t. ( , (y)\ (6-21)

and the dots stand for all terms besides the sink term. Since

the analytical solution of

(6-22)

is given by

106) (6-23)
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we integrate as follows here:

(Vp)Ik&t (""' )1 (6-24)

If we obtain a negative value of j71in spite of these precautions,

then this will be due to instabilities caused by steps which are

too large for the integration of the energy diffusion terms.

In such cases, the time step At is reduced.

6.3. Accuracy and Stability of the Difference Formulas /79

6.3.1. Accuracy

In Section 5 we will discuss several aspects of the accuracy

of the difference formulas.

Among these we have:

a) Statistical errors of the linear difference approxima-

tions;

b) Truncation errors;

c) Aliasing errors;

d) Agreement of the difference formulas with the physicall

conservation laws which follow from the integrals of the

differential equations

3) Numerical errors

The most important results are the following:

a) The deterministic linear difference approximations are

only correct for the statistical average and for suffi-

ciently smooth averaged fields. The instantaneous

deviations from the statistical average have a standard
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deviation which is proportional to <> AX I and there-

fore becomes smaller only as the dissipation <e> and the

mesh edge length Ax are decreased. It is likely that

the deterministic approximations can be replaced by a

statistical method which can be determined quantitatively,

but this was not done. The area averaging results in a

reduction in the error by only a factor of three compared

with the consideration of point velocities.

b) The truncation errors oflthe difference formulas have

the order of Ax 2 for position and are of order &t 2 in

time for the convective terms. Phase errors can be

ignored because of the small energy contribution of the

short wave Fourier components of the solution. The

effect of "false diffusion" will be discussed but does

not seem to be important either.

c) The aliasing effect will be discussed. This error can

lead to instabilities, but they are controlled in the

conservation properties which will be discussed in the

following.

d) The difference formulas must satisfy the condition that / 80

if there are no source and sink terms, the time changes

of momentum and kinetic energy integrated over the

entire flow space must vanish. The same conditions

apply for the differential equation. This condition

is satisfied by the difference formulas used here.

e) The reasons for the production of numerical errors have

been demonstrated. Rules will be given which, if followed,

make it possible to avoid these errors, especially when

extensive sums are formed.
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6.3.2. Stability

As discussed in detail in Appendix 6, stability criteria

will be investigated. First of all the permissible time steps

are determined for the linearized difference formulas in their

three-dimensional form for cylindrical coordinates using the

Neumann criterion [111]. Three types of difference formulas

are investigated. The first one corresponds to the formulas

for the momentum calculation and the second one corresponds to

the energy ",w calculation. As the third type we will investi-

gate often suggested difference formulas which correspond to the

first type except for the approximation of the diffusion terms,

which are calculated according to DuFort-Frankel. The following

results are obtained (see Appendix 6):

a) The permissible time step At (except for the second

type) can only be given in an explicit algebraic form

for the limiting cases of pure convection and pure

diffusion. In the first case we have tand in

the second case A - . For the third type At is

arbitrarily large for stability and for pure diffusion.

b) For the general case of mixed convection and diffusion,

the permissible time step At is determined numerically.

Comparisons do not yet exist in the literature.

c) The permissible time step At can be much smaller than

the minimum of the time steps which result for the

limiting cases. A formula is given according to which

a conservative time step can be easily determined

algebraically.
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d) When the Du Fort-Frankel form is used for small /81

viscosities, one is led to smaller permissible time

steps than those used here for multi-dimensional problems.

From the result a) and according to the turbulent viscosity

which varies according to (5-69) it follows that at high Reynolds

numbers the permissible time step is always proportional to the

mesh edge length Ax.

In addition, in Appendix 6 we will discuss the method of

Hirt [57] for investigating the influence of nonlinearities on

the stability. It will be shown that this method is not practical

here.

Finally we would like to state why we do not use an implicit

method [44, 11] -to avoid instabilities. The reasons are as

follows:

a) The numerical cost for solving the large, nonlinear

systems of equations which are produced would be very

high;

b) The increased numerical effort could not be compensated

for by a larger time step At, because the inaccuracies,1

especially regarding the nonlinear convection terms,

would become much too large. For example, note the

effect of the time step on the fine structure model

according to Chapter 5.2.2.5.1.

c) The permissible time step is sufficiently large because

At -1Ax.
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7. BOUNDARY CONDITIONS /82

In this chapter we will give the boundary conditions for inte-

grating the difference equations. Periodic boundary conditions

are assumed in the azimuthal and axial directions. The periodl

lengths are selected according to experimental results. There

are wall conditions in the radial direction. For this the basic

equations are integrated over the wall meshes and the strongly

varying profiles as well as wall roughnesses are considered by

means of logarithmic wall laws.

7.1. Periodicity Condition

The basic equations are elliptical as far as space is con-

cerned and therefore require boundary conditions as all surfaces

of the flow field being considered. Such boundary conditions

must be introduced artificially in the axial direction and,. for

plate channels (or annulus channels with radii ratios R2/Rl

close to 1) in the azimuth direction. This is because the

numerically simulated flow space cannot be selected as large as

desired for specified mesh sizes. According to convention [29,

83, 94] periodic boundary conditions are used here:

Cartesian + (7, i-CA, tj2 (7.l)

- (7-1)
Cylindrical ) (xc,- ' ) '

These boundary conditions would be exactly correct if J= 27T

and the channel were a torus with the circumference length X.

In all other cases, this boundary condition does not have a

physical reality. In the first approximation, the periodic

boundary condition can be justified as follows, for example

in the axial direction. If the flow fields y in the axial

111



direction are only correlated over a length of X/2, i.e.,

dx ~ ;(x~(,y;6 equals zero for z;1>k , then for z>X't one

can prescribe any arbitrary boundary condition without influencing

,Iy i) ,and therefore, for example, one can also require

periodicity. From the measurements of Comte-Bellot [18] for plate

flow, it is evident that the correlation length defined above

corresponds to about 1.6 times the plate distance in the axial

direction and about 0.8 times the plate distance in the direction

perpendicular to the flow direction. Therefore, we selected /83

the following period length:

Xd AV, I)cX 2
r 27  R4/R2 9 o. (7-2)

The values used by Deardorff [29],X 1=3, X2 = 0.7,seemed to be

too small based on the measurement results discussed above.

7.2. Exact Wall Condition and Galileo Transformation

The exact wall condition (1-5) is valid at the walls. Since

only the reference area of the radial velocity component lies on

the wall surface, the exact wall conditions can be simulated here

without any problems:

S3 -wall wall= (7-3)

For the two other components, additional approximations

of (1-5) are necessary. For this see the following sections.

In order to improve the stability properties and to reduce the

numerical inaccuracies, when differences are formed, we carried

out a Galileo transformation. It is assumed that the coordinate

system is not at rest but itself moves at the velocity VG,

which corresponds approximately to the average axial velocity

with which the flow is moving in the axial direction. In this

way the basic equations are not changed. However, now the
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wall condition for the axial velocity component becomes [29]

u, walli--  x I wall = - VG (7-4)

7.3. Wall Condition for the Axial Velocity Component xr

One must start with the momentum conservation equation
(3-15) averaged over the mesh volumes in the exact form. If we
considered a wall mesh, then the approximation of the convective
terms does not cause any problems because of ui wall However,
this is not true for the diffusion terms. Here the term

must be considered separately. For a wall mesh along the /84

inner wall at r=rl we have:

Ir--- 4 2 --r 'r (7 -1)

with the wall shear stress

Z 7-- - (7-6)

The terms can be approximated at r=ra/l just like in the
interior of the flow. However, we cannot set because
the velocity profile varies too much in the vicinity of the wall.

i is the value of -\' in the wall mesh at n = 1 according
to Figure 5.
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Instead, we will set:

- A?> (7-7)

If we approximately assume, as is done in general [29, 120],

the following logarithmic profile for the average velocity in the

vicinity of the wall:

where k is the Karman constant and E1 is the wall roughness along

the inner wall, we have

<N3e> 4  (7-8)

and therefore

ZI '4 (# W, >

If we consider the Galileo transformation (7-4), then we

have the following complete form

'-4 ((&> CVGC4 -A) . ) % (7-9)

For plate flow with the same wall roughness at both walls

we can calculate J 7i,> from a simple force equilibrium as

follows:

SPxR2RA) (7-10)

In all other cases it is necessary to determine the average

wall shear stress during the integration. See Chapter 7.5 for

this.
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For the constants k, E1, E2 , Deardorff [29] used the follow-

ing values referring to the measurements of Laufer [76]:

k = 0.4; E1 = E = 8.810o (7-11) 85

If we calculate the average velocity profile using the Prandtl

mixing length model (2-5) with the mixing length L according to

(2-8), then we obtain the same profile for large distances from

the wall if the constant used in (2-8) is set equal to A = 4.

A and El, 2 are therefore constants which both consider the wall

roughness and cannot be selected independently. The value A =4

will therefore also be used in (5-88).

7.4. Wall Condition for the Azimuth Velocity Component.

For the component \Y/wal we essentially have the same formulas

as for the axial component. However, since in this case the

average velocity is always zero, we set:

V(-r -J. (7-12)

Therefore we assume a linear variation of and the error

thereby produced is somewhat corrected by considering the turbulent

viscosity rl which is the result of the fine structure model.

7.5. Calculation of the Average Wall Shear Stresses

As already mentioned in Chapter 7.3, the average wall

shear stresses <Tw,(>,< Zw'can only be calculated for plate flows

with the same wall roughnesses of both walls from a force

balance and by considering the symmetry. In all other cases

it is necessary to calculate<Z7w) from the numerical solution

itself. Following we will discuss the computation procedure for

the inner wall. For stationary turbulence, we obtain the time
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average from a force balance on the ring of wall meshes,

according to the following diagram

The wall shear stress can be calculated from a force

balance if the average shear stress variation ' I is known

in the interior. This is calculated from

At the beginning of the integration the wall shear stress is

specified per input and it is again recalculated when the

stationary solution is obtained according to the formulas given

above. This process is then repeated after the integration time

until the wall shear stresses no longer change. Instead of the

time average value we use the periodic average value as an approxi-

mation, which does not produce any error for sufficiently large

period lengths *

* However, see Chapter 10.4.7.
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7.6. Wall Condition for the Kinetic Energy E'

All the velocity fluctuations vanish at the wall and

therefore the fluctuation motion energy is also zero there.

This wall condition can be considered in an exact way for the

convective terms. For the diffusion terms it is necessary to

know the gradient *=7Wall . It does not make sense to calcu-

late this gradient from - /Wal=/ because has

a maximum very close to the wall, as experiments [18, 76] have

shown. Therefore we set

PEI Wal (7-15)

where O'< 011 1 For these calculations, we will use c 1 1  0.2

in this paper.

When the source term is calculated for the energy equation,

it is necessary to calculate the squares of velocity deformations,

and at the wall the radial gradient of the deviation of the

velocities from its periodic average value must be known. Here

we will use linear gradient approximations.

7.7. Wall Condition for the Pressure

According to (6-12) it is necessary to know avvat/Wall,

and this is the area average value of the radial acceleration

of the wall which would be obtained if the pressure were not

considered. If we consider the momentum equation of this com- /87

ponent for such a mesh area element which occurs at the wall,

it can be seen that because of the wall adhesion condition, all

terms vanish except for the radial diffusion term:

r 7 wall wall (7-16)
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From the continuity equation (1-8) it follows that

o / (7-17)

All of these terms vanish at the wall, but not their radial

derivative. For calculating it we use the average values over

the wall mesh which are available, and we find:

- f- - r 3j (7-18)
t a 1; R4 R .A .

A similar relationship is obtained for the other wall.

8. INITIAL CONDITIONS /88

The initial conditions must be prescribed for the velocity

fields u and the kinetic energy field Vj\of the fine structure.

In order to be effective, these must be prescribed so that they

already correspond to the stationary model in the statistical

sense as far as possible.

8.1. Initial Values of the Velocity Field

The direct simulation of turbulent flows is based on the

hypothesis that the initial values in principle do not have any

influence on the statistical properties of the solution when it

has reached a statistically stationary state [29]*. In order to

make the computation time small up to the point where this

stationary state is reached, initial values will be selected

which already correspond to the stationary state as much as possible.

* This hypothesis can be seen to be valid because according to
Chapter 10, the same results are obtained for various grid
sizes.
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The following requirements are placed on the initial values:

- Fulfillment of the boundary conditions;

- Agreement of the average velocities with corresponding

experimental data;

- Agreement of the average kinetic energies with the

corresponding measurement data;

- Reasonable energy spectrum which agrees with the Kolmogorov

spectrum (4-4) at high wave numbers;I

- The incompressibility condition is satisfied.

In order to satisfy the first two requirements, the average

velocity profile is specified according to measurements of

Laufer [76].

The velocity fluctuations around these average values are

calculated from the vector potential{PtPoP4j [2, 121] in order to

observe the incompressibility condition:

= f z ?Ot4

I (8-1)

It can easily be seen that the velocity field determined in /89
this way satisfies the continuity equation for all meshes and for
arbitrary potentials (Pot1 , Pot 2).

In order to produce a velocity field with a reasonable
energy distribution, the potentials (Pot1 , Pot 2 ) are designed by
using a random number generator with a given fluctuation width
in such a way that the kinetic energy on the average will
correspond to the measurements of Comte-Bellot [18] for the three
velocity components. In order to produce a Kolmogorov spectrum
we use an algorithm which starts with a randomly determined pre-
scribed value at the walls and at the center and which determines
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the potential values first at the point which is half-way between

the meshes with already specified potential values, so that the

resulting velocities are correlated with the neighboring values

in proportion to r 2 / 3 and where r is the distance between the two

reference meshes. According to (4-5), this correlation corresponds

to the variation k- 5 / 3 of the Kolmogorov spectrum. Figure 16

shows such a randomly produced velocity field in the correspond-

ing energy spectrum for the axial wave numbers. The agreement

with the Kolmogorov spectrum is satisfactory even though the

produced velocity field may seem somewhat too random. This is

based on the calculation of the velocities by differentiation of

the potentials according to (8-1).

The method used here only has a heuristic basis. Fox-

Deardorff [44] indicate a method briefly for which the energy

spectrum is enclosed on the initial values in a mathematically

justifiable way by specifying the Fourier transform of the

velocity field. However, this method cannot be used for

cylindrical coordinates.

8.2. Initial Values of the Kinetic Energy ,E

The kinetic energy of the fluctuation velocities inside of

the meshes is determined from the velocity field in such a way

that if the convection and diffusion terms are ignored, they will

correspond to the stationary solution of (5-44):

C D20 C3 (8-2)

V- C DZ (8-3)
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9. THE PROGRAM -TURBIT-1 /90

The numerical simulation of turbulent flows requires an

optimal programming technique because of the extensive amounts of

data and large calculation times. The programs used here are

mostly programmed in FORTRAN. Assembler programs are used for

dynamic core storage use and in order to determine the permissible

computation time. This is done so that,\if the time limit is

exceeded, all of the solutions calculated up to that point can

be saved on background storage units. A dynamic data management

system is used as one of the bases of the program. For this, the

required data fields are divided into blocks, except for the

auxiliary potential 9. A block includes all the values of a

variable in the same plane parallel to the walls. A subprogram

package [126] manages these blocks. Blocks not required at

some time are automatically stored on direct access storage units

if the core storage space is not sufficient. By corresponding

programming, it is possible to have a readout or read-in of one

block a maximum of once per time step. Using the assembler

subprograms, one is insured that the available core storage is

used in the optimal way. A maximum of 34/ blocks must fit into

the core storage unit at the same time independent of the number

of meshes in the radial direction. The subprogram package is

so effective that the costs of the calculation take on their

minimum when the core storage unit is selected so small that

this minimum number of blocks fits into the core storage unit.

The program, therefore, requires a 820 K Byte core storage unit

for problems with 64*32 meshes for a plane parallel to the walls

as well as 32 meshes in the radial direction (without overlay

for the program Modulus). Of these, about 260 K are reserved

for the auxiliary potential p;j approximately 200 K are reserved

for the program instructions. About 30 K are reserved for an

input/output buffer. On the IBM 370/165 in Karlsruhe, the
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available core storage space is about 1500 K Byte and there-

fore problems having 64*64*32 meshes can be calculated. It would

be possible to reduce the core storage requirement by dividing

the auxiliary potential y i into data blocks and solving the Poisson

equation using the transposition method described in [125,128].

In order to avoid unnecessary calculation operations, all of

the expressions which remain unchanged during the calculation

are calculated once at the beginning of a calculation. This type

of optimization cannot be assigned to an optimizing translator,

because it cannot optimize over several subprograms.

In addition, multiple subscripts are avoided and instead the /91

required complicated linear subscripts are calculated without

multiplications. In order to minimize the number of square

root operations, we do not store the kinetic energy E' but

(V) ?' instead.

In order to check the calculations and in order to present the

results, we use subprograms [84, 1241 for graphical output of the

scala and vector fields in the form of height lines and vector

fields. These are especially suited for cylindrical and other

curvilinear coordinates. The average quantities as a function

of radius or wall distance are produced using the program

GRAPHIC [39].

One major problem consists of demonstrating that the programs

do not have any errors. There are no test problems having analyti-

cal or known numerical solutions for the geometries considered,

for which all of the terms in the equations being integrated

do not appear in a non-trivial way. The test problems used are

laminar flows. See Appendix 8 for this. The solutions for turbu-

lent flows can only be tested using experimental results. For this
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see the following chapter.

The program built has been named TURBIT-1. TURBIT is the

abbreviation for TURBulenter Impuls Transport, (Turbulent momentum

transport)

10. NUMERICAL RESULTS

10.1 Specifications of the Calculated Cases

Two different physical problems are treated:I al plate channel

and an annulus channel with the radius ratio R2/Rl=5. Both

problems are characterized by K (Cartesian) or Z (Cylindrical).

For each problem case, we consider four different cases Kl,

K2, K3, K4 and Zl, Z2, Z3, Z4 , respectively, which differ re-

garding the size and shape of the difference grid as well as

the period length. Kl, Zl are the cases with the smallest mesh

number; K4, Z4 are the cases with the largest mesh number. Tables

12 and 13 contain the exact data for specifying the 8 cases.

Non-equidistant meshes are used for cases K4, Z4 in the radial

direction:

n 1 2 3 4 5 6 7 8 9 o10 11 12 13 14 15 16

32 31 30o 29 28 27 26 25 24 23 22 21 20 19 18 17

I I I - I I I I
A'r o.o18 o.02 o.o22 0.027 0.03 o0.038 o.o40o 0.042

In the other cases we use equidistant meshes. It should be

noted that the number of meshes in cases K4, Z4 is 65536 which

is substantially larger than the number 6720 used by Deardorff

[29] and the 32,000 meshes used in [331. These numbers do not

represent the upper programming limit, which is given only by

the available or the sensible computation time. As Figure 12
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shows, the computation times (Figure 4) are already so large that

a further increase in the number of meshes does not seem to be

defensible.

In the cases Kl-K3, Zl-Z3 we started with random initial

values according to Chapter 8. For the cases K4, Z4, the initial

values are obtained by interpolation from the solutions deter-

mined in K3, Z3. In this context, the integrated time steps

as well as the machine computation times given for K4, Z4, con-

sist of the sum of the values given for K3, Z3 and for K4, Z4

alone.

Table 14 shows the calculation time required per time step.

Integration of the VFg fine structure energy requires on the

average of 33% of the computation time. The velocities without

pressure correction require 57% and the calculation of the

auxiliary potential T , or of the pressure p requires only 10%

of the computation time per time step.

10.2. Qualitative Description and Evaluation of the Results /93

10.2.1. _Three-DimensionalFlow Models I

Figure 17 to 20 give an impression of the effort required

for the direct numerical simulation of a turbulent flow, as well

as the results. These figures show three-dimensional "instanta-

neous photographs" of the flow fields in the form of vector and

contour graphs. Each of them corresponds tolan arbitrarily

selected plane of the flow space. Only the fluctuation field

;U- f4-A of the velocities is represented. The velocity com-

ponents in the plane of the drawing are characterized by vectors

which start at the point under consideration and which have a

length and direction corresponding to the velocity vector. The
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fluctuation velocity perpendicular to the plane of the drawing

is characterized by contours having a constant contour value

difference. In this way we obtain a good plastic representation

of the flow processes. In addition, Figures 18, 19 and 20 show

the contour representations of the fine structure energy E

as well as the pressure p defined by (6-3). The contours

corresponding to negative function values are given by dashed

lines and those corresponding to positive values are given by

solid lines. The latter also had markings for identification

of the height using the legend given. These figures have

markings at the edges which characterize the separations between

meshes. For the solid ring figures, these markings are partly

inside of the flow space (for example, Figure 17). Here one can

clearly see the non-equidistant radial mesh separations as well

as how the periodic boundary conditions are satisfied.

The most important results shown by the figures is the

fact that the flow fields presented are indeed as irregular

as one imagines turbulent flows to be. This fact is an

important argument for the fact that the program used does not

have any errors. As is well known,many program errors lead to

some kind of regular features which cannot be explained

physically. The systematic phenomena which are shown are

exactly those one would expect from the physics of the problem.

Everywhere one can see that in the vicinity of the wall, the

greatest fluctuation motions occur. This is exactly where the

kinetic energy production is great because of the large

velocity gradient. Because of the large velocity fluctuations, / 94

the vE7 values are a maximum and the pressures have extreme

values. The fine structure tips shown clearly in Figure 19

which are perpendicular to the flow direction and go from the

wall to the center are very interesting. This could be one of

the often observed intermittence processes [89,115, 120], for
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which the flow is relatively quiet over large regions and the

stored energy is transported in pulses from the wall to the

center now and then. The figures for the problems with many

methods are too confused to be able to follow the motions

in detail. Figure 20 for case Zl is probably better suited for

this.

10.2.2. Time Functions and Spectra

Figure 21 shows the flow behavior as a function of time at

a location r=0.844, where according to Figure 44 the average shear

stress v~'.' is positive. The velocity components as well as

the macroscopic energy calculated from it are shown, as well as

the instantaneous product V-Ox, and the fine structure energy g |

starting.at t=0, where random initial conditions prevail up to

t " 5. In real dimensions, this dimensionless time at D = 18 cm,

Rem = 240 000 und % = 0.80 m/ corresponds to about one second

according to [18] in real time. Perhaps one would have expected

a motion which fluctuates more here. However, one should con-

sider the factthat because of the space averaging over

individual meshes, the time functions are also smoothed. From

this figure one can see that the flow apparently does not move

towards a true stationary solution (as is the case for laminar

flow). In addition it can be seen that after some time, the

"Reynolds stress" Wa' i does indeed become mainly positive.

From the time functions given, we calculated the energy

spectra and show this on the lower right of Figure 21. Because

there is no periodicity here at large frequencies (recalculated

here for dimensionless wave numbers ) an apparently large con-

tribution of the Aliasing error is produced [50, 9]. The spectra

of the space functions vcxc),V1r , () ( also shown do not have

such errors, because these functions are periodic according to

the model. Nevertheless, both types of spectra have similarities
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of the type so that in the center there is a region correspond-

ing to k- 5 3 which drops off in proportion to k 7 at the high

wave numbers. This is clearly also shown for the spectra

corresponding to cases K4, Z3 (Figure 22) where in the axial

direction it is possible to represent more meshes and therefore

more wave numbers.

10.2.3. Problemof Formation of the Average Values

The statistical properties of a flow should move towards a

stationary state independent of the instantaneous space photo-

graphs or the unsteady variations at a point. In Chapter 10.4.1

we will discuss whether or not this state is indeed reached.

In the stationary state, when there is a large number of meshes

in the x-L-f ir x1 -x 2 planes, respectively, the time averaging

should be able to be replaced by periodic averaging over these

planes. This assumption was always made for the evaluation of

the results. However, under the given conditions (not

completely stationary, only a small number of points) this did not

actually happen and therefore the period average values shown

in Figures 26 to 64 show large fluctuations. The replacement of
period averaging by time averaging alone is not practical. For
example, Figure 65 shows the velocities at a location as a

function of time for the case K3. In.order to produce this curve,

the computation time is 2 hours on an IBM 370/165. Apparently this

computation time is not sufficient to obtain average values

with sufficiently small fluctuation widths. The combination of

both types of averaging seems desirable. For this, all of the

evaluations would have to take place simultaneously with the

integration, because it is almost impossible to have intermediate

storage of the data for later evaluation for the cases with 65,000
meshes. It should be remembered that the values of the three

velocity components plus the fine structure energy require
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106 Byte of storage per time step. A magnetic tape contains about

107 Byte.

10.2.3. Contribution of the Macroscopic Structure to

the Turbulent Processes

N

In Figures 43 and 44 we show the shear stresses as a function

of radius (or wall distance) for one plate channel and one annulus

channel each. Only the shaded region can be attributed to the fine

structure model according to Chapter 5.2.3.1. Therefore, we can

see the favorable result that most of the momentum transport is

brought about by the macroscopic structure. The method used here

simulates the turbulent momentum transport primarily by direct

integration of the Navier-Stokes equations.

Figures 34 and 35 show the kinetic energy of the solutions

coded according to the calculation methods. The contribution

between a zero line and the first curve corresponds to the fine

structure energy according to Chapter 5.2.2. The next region

was calculated according to (5-92) and differs only slightly

from zero. The region above it finally is the energy contribution

produced by the macroscopic structure. This energy contribution /96

apparently is not much greater than the contribution of the fine

structure. The models used for this are therefore not negligible

for the local processes.

In the following chapters we will discuss some of the

individual results which will support the physical plausibility

of the method. In particular we will make clear that even

relatively coarse solutions give reasonable results for cases

K2, Z2. This means that the greater amount of effort for the

finer resolution corresponding to cases K4, Z4 is not absolutely

necessary for future problems.
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10.3. Quantitative Comparison with Experiments

10.3.1. MaximumVelocity

In the following we will compare the calculated maximum of

the average velocity profile <'t),,,,with corresponding data

from the literature. See Table 15 for this.

The agreement between the calculated values and the measured

values lieswithin the experimental measurement errors for the

corresponding Reynolds numbers.

For the annulus, Barthels [111 and Maubach [88] predict a

reduction of the maximum velocity by 1-2% compared with plate

flow. The values calculated here lie between 0-10% under those

for plate flow. This means that the tendency is represented

correctly.

10.3.2. Velocity Profile

Figure 26 shows the velocity profile calculated for plate

flow. The measured values reported by Comte-Bellot [18] and

Laufer [76] are shown by dabhed lines. The differences between

the measured values and numerical results can hardly be

distinguished. The profiles for the annulus flow according to

Figure 27 show the expected displacements of the maxima towards the

inner edge. The difference between a maximum and average

velocity is a better measure for the agreement between the calcu-

lated and measured profiles than is the graphical representation

of the profile. Corresponding numbers are given in Table 16.

It can be seen that the calculated values agree well with

the measured values. We can clearly see an improvement of the

results compared with those of Deardorff. This is probably due to

129



the division of the fine structure model into a locally isotropic /97

part and an inhomogeneous part (Chapter 5.2.1).

10.3.3. Fluctuation Velocities

In Figures 28-30 we show the average velocity fluctuations

1<1(V3 /e for the various components for plate flow. Correspond-

ing results are shown in Figures 31-33 for the annulus. For plate

flow, we also show the measured values of Comte-Bellot (dashed

lines) for comparison purposes. The agreement of the average

values can be considered good. The numerical values do not

have as large a variation with wall distance as do the experimental

values. This is partly dud to the fact that the fine structure

energy was assigned uniformly to the various components correspond-

ing to the assumption of local isotropy. In any case, these

results are much better than those of Deardorff [29]. There the

contributions of the fluctuation velocities were all higher than

was the case for the measurements. In the vicinity of the wall,

maxima of 5 were indicated for the axial velocity fluctuations.

This is about twice as high as the corresponding value measured

by Comte-Bellot [181. Here again we had better agreement because

of the separation into a local isotropic and an inhomogeneous

fine structure model.

Figures 31-33 show that (except for Z4) the fluctuation

velocities for annulus flow are smaller at the inner edge than

at the outer edge. This corresponds to the physical realities

because for Rl/R2 0, i.e. for a circular tube, the fluctuation

intensity has a minimum at the center, just like a plate. The

deviation for Z4 is attributed to insufficient stationary condi-

tions (see Chapter 10.4.1).
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10.3.4. Axial Correlations

The two-point correlations of the axial velocity components

in the axial direction were calculated and are compared with

the measured values of Comte-Bellot [18] in Figure 36 for x3=0.5

(center) and in Figure 37 for x3=0.031 (vicinity of the wall).

The agreement of the numerical values is satisfactory within the /98

framework of the statistical scatter for cases K2-K4 for which

the period length is 4. Corresponding correlations for the other

velocity components are shown in Figure 38 for x3=0.5. Compari-

son measurements are not known for this case. The correlation

curves clearly verify the result found by Deardorff [29] accord-

ing to which the axial component is correlated over a larger

axial interval than the two other components. This result had

been found before Deardorff by Comte-Bellot [18] by determining

the correlation lengths from spectrum measurements. These

correlation lengths are shown in Figures 39 to 41 for the plate

channels. The dashed curve corresponds to the measurements of

Comte-Bellot. Here again we can consider the agreement to be

satisfactory. Figure 42 shows the corresponding results for

an annulus, but without any experimental comparison.

10.4. Influence of the Model Parameter

10.4.1. -Integration Time (Steadiness)

It is not easy to decide whether the solutions discussed here

can be considered stationary in the statistical sense. The period

average values have large fluctuations after a relatively long

integration time. This is especially clearly seen in Figures 45

and 46 in which the period average values of the accelerations

are shown. If we remember that the pressure gradient can only

produce an acceleration having the magnitude 2, then the

fluctuations of the average accelerations are remarkably large.
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This is also true for cases Zl and Z2, where according to (1-41)

the required "start-up time" has greatly been exceeded. It is

only from the systematic variations of the accelerations for

cases K4, Z4 that one can conclude that the stationary state

has not been reached at least for this case. A better measure

for closeness to the stationary state is the variation in time

of the macroscopic energy(g<>) and the fine structure energy

VY7>) (t) averaged over the entire flow volume at a point in

time. For cases Kl and Z3, these variables are shown in

Figure 47 as a function of time. The oscillations are much

smaller for Kl but this is not so for Z3. From these and similar

curves we have the following results: the solutions Kl, K2,

Z1, Z2 can be looked upon as sufficiently stationary. For

cases K3, Z3, the deviations are probably only small. The cases /991

K 4 , Z4, however, are not stationary in this statistical sense.

On the other hand, the substantial increase in the problem time

for cases K4, Z4 cannot be defended because of the large computa-

tion times.

10.4.2. Period Lengths

One measure for sufficient magnitude of the period lengths

X1,X 2 or X,0,i respectively, are the deviations of the two-

point correlations for the distances X1 /2, X2 /2 or X/2, 0/2

from zero, respectively. Axial correlation coefficients were

already discussed in Chapter 10.3.4. Figures 24 and 25 give

lucid representation of the correlations. In Figure 24 we

show the following using contours for Kl, K2, K3:
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Figure 25 shows the following for cases Z1, Z2, Z3:

The apparent symmetries are a consequence of the periodic nature

and period averaging. From Figures 24 and 25, one can see that

the correlations first decrease rapidly with increasing distance

of the correlated points. This effect is reproduced to about the

same extent in all cases. However, at a distance of 1/2 of the

period length, it is only in the cases with x =4 or 0 = 2,

respectively, that we have sufficiently small correlations

(about ± 10%. For the cases K1 and Zl we still have substantial

correlations (KL:l± 20%; Zl: -60%). The period lengths X1 = 2

or J= 7r, respectively, are not sufficient. From similar

figures for plate flow, it also follows that X2=1 is too small.

This demonstrates a deficiency of the Deardorff calculations

with X2=0.7. On the other hand, the period lengths selected for

K2-K4, Z2-Z4 seemed to be sufficient.

10.4.3. Mesh Size

The mesh size is very important for determining the numerical

effort as well as the period length. The requirement KM>30 as

a prerequisite for the existence of local isotropy is only

applicable for cases K4, Z4. Nevertheless we were able to show

that it is possible to realize these conditions in practice. /100

As can be seen from the results already discussed and from the

Figures 26 to 64, the averaged results do not differ significantly

from each other for the cases with different mesh sizes. In

addition, all the cases having the same geometry were always

treated with the same programs and model constants according to

Table 13. These results show that for the expenditure used for
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cases K2, Z2, it is possible to obtain physically reasonable

results.

10.4.4. Time step_ At

For the case K2 we integrated over an additional time span

of 0.096 starting with the solution at t= 3.8. Three cases were

considered:

Case a) At = 0.0015 IBoth with Jc9

Case b) At = 0.003 According to (5-73)

Case c) At = 0.003 Jc 9 calculated according to (5-73)
just as for At = 0.0015

Cases b) and c) gave results for the velocities which

differed by about 1% from the solutions for case a), (referred

to the total change within this time span of 0.096). The

results of case b) for the calculated fine structure energy are

closer to the reference solution of case a) than for case c).

This is also true for the correctness of the correction factor

c. On the other hand, the reverse holds true for the average

velocities. Based on this experience, we suggest a correction

factor ic in future calculations which varies somewhat less with

At than indicated by Equation (5-73).

The variation of the instantaneous results with a decreasing

time step cannot be considered negligible. This experience

was also reported in [44]. In the statistical sense, the

effects seem to be small. However, we have not yet carried

out an exact investigation of this.
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10.4.5. Effect of Integrationof the FineStructure

Energy Equation

For the case KI, we started with the solution at t=5.6 and

integrated over additional problem time of 1.8. First of all VE'

was determined by integration of the transport equation derived

for it, and then we also used Equation (8-3) according to the

method of Deardorff without integrating an additional transport

equation. In the second case, we first found larger energies /101

than at the wall meshes, which can be explained by the missing

convective and diffusion transport. These increased fine

structure energies then lead to a correspondingly larger damping

of the coarse structure fluctuations. Nevertheless, the

statistical average values vary only slightly. This is a

remarkable result. One would have expected that the integration

of this additional transport equation, which, in particular

avoids the weakness of the Deardorff model indicated under a)

in Chapter 5.1.2, would be very important for the accuracy of

the result. One can show that when the fine structure energies

are calculated from one transport equation, these are almost

completely correlated with the source term P according to (5-44),

especially for small mesh edge lengths h. In order to show this

clearly, we integrated the following initial value problem using

Dysys [1221, which can be considered a model for equation (5-44)

dE h 0•

C 3

C3 =4 C =
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A harmonic function is assumed for the deformation velocity,

and its average value approximately agrees with the true values

V2- 5 .j"'_W/ (4t S eoW)

The factor h follows from (4-34). Figure 66 shows the calcu-

lated results for h = 0.01, 0.1 and (in order to clearly show the

effect) h = 1. One can see from this that as the correlation E(t)l

and the energy E (t) corresponding to the simpler model becomes

greater, the smaller h becomes. Clear differences are only

found for the unnaturally large mesh distance h = 1. This means

that we have found an important positive result for future calcu-

lations which states that the effort of an additional integra-

tion of the energy equation is not necessary. However, the

effort saved is not particularly large, because most of the

computation time is required for calculating the source term. /102

10.4.6. The Correction Constants 1' 2' 3

An additional measure for the correlation between the fine

structure and the macroscopic deformation velocity is the

factor 3defined by (5-82). This factor, as well as the

factors e, I according to (5-14, 15),were determined numeri-
1 21

cally and are shown in Figures 48 and 49 for cases Z2 and K4.

It can be seen that the factors d are clearly closer to the

assumed value of one than the value which was also assumed to

be one in earlier theories. However the deviations of 20% are

not serious. As the figures show, these factors are mostly

independent of position, mesh size, channel geometry and can

be considered as "universal" constants in future calculations:

The value of 01 given here is in contradiction to the data in

Table 13, and will now be explained.
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10.4.7. Problem of the Model

In the first test calculations using the method described

in Chapters 3 to 8, we first had unexplainably large axial

correlations. Part of this effect could be explained and

correlated according to Appendix 7. In addition it was found

that the calculated viscosities of the locally isotropic fine

structure model are too large. Using corresponding artificially

changed values of the constant d according to Table 13, we were

able to avoid this effect. The reason for this weakness of the

fine structure model is attributed to the fact that the correction

cd suggested in Chapter 5.2, 2.5.2 was not considered. The

correction is supposed to take into account the deviation of

the actual spectrum from the Kolmogorov spectrum for small wave

numbers. However, we do not have any quantitative data for the

lengths L according to (5-77, 78).

In addition we find that the calculation of the wall shear

stresses according to Chapter 7.5 could not be carried out be-

cause the period averages used for this had fluctuations which

were too large. The ratio of the wall shear stresses used

corresponds to the data of Barthels [11].

10.5. Determination of Turbulence Model Constants /103

10.5.1. Energy-Length Model

10.5.1.1. Calculation of Quantities to be

Approximated

In order to prove the usefulness of direct numerical simula-

tions for supporting turbulent models, according to Chapter 2,

we calculated the length L defined by (2-13) and the length-

production term L-PROD defined by (2-14). For the annulus,
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integrals Sljd&r are replaced by

The results are shown in Figures 52 to 55. The length L first

increases with wall distance Z more than k'z (k=Kdrmdn constant)

and has a maximum of about 0.17 in the center. The main variation

corresponds to our physical expectations. The length production

term is about zero in the center and increases towards the walls.

It is reasonable to have the production term vanish in the center

because it is identically zero for homogeneous turbulence.

10.5.1.2. Calculation of the Constant al

Since in addition to the length L we know the shear stresses

qz ,, /, the kinetic enbrgy £*'> and the average velocity pro-

file, we can calculate the "constant" al1 according to (2-9) for

each location z from

04 P'

The results are shown in Figures 56, 57. First of all it

becomes clear that this "constant" is not a true "constant".

The calculations show that there is a slight increase of the

"constants" with wall distance. The large fluctuations in the

center are a consequence of the mathematical uncertainty of

the definition of (0/0). Negative values indicate that the

signs of LwVl> and 8<u">/4@ can differ, as Maubach-Rehme [90]

also discussed. Based on the large fluctuations, the average

value al is weighted from al(z) and calculated with 4d,). The

results calculated are as follows:

Case Kl K2 K3 K4 ZI Z2 Z3 Z4

al 0.0848 0.0835 0.0685 0.0672 0.0906 0.091 0.0592 0.0463

138



The average value is about 0.075. The fact that this value is /104

smaller than the usually assumed value is a consequence of the

relatively large values of length in the vicinity of the wall.

10.5.1.3. Determination of the Constants a4 and a5

First a5 is assumed to be identically zero and only a4 is

considered. Using the definition

L- PROD

CV, L' ( £
we calculate the values for a4 as a function of position, and this

is shown in Figures 58, 59. Just like al, the uncertainty in the

definition equation leads to large fluctuations in the center.

Independent of this, there is a clear increase in the "constant"

a4 with wall distance. The values of a4 weighted with L-PROD(ZI)

are:

Case K1 K2 K3 K4 Z1 Z2 Z3 Z4

a4  1.049 0.775 1.17 0.513 0.655 0.748 1.12 0.50

The general average value is a4 = 0.8.

Because of the apparent variation with wall distance, the

separation of additional terms for approximating the length pro-

duction is desirable. If we use the additional term with the

constant a5 suggested by Rotta, then we obtain the values a4, a5
for the individual cases from the minimum of the following

expression f(a4 , a5 ):

-tcye , ah 1

L-PRo r d-r 04- e.
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The results found for this are as follows: /105

Case K1 K2 K3 K4 21 Z2 Z3 Z4

a4  1.08 0.78 1.6 0.9 0. 0. 0.44 0.95 0.65

a 5  -0.13 -1.5 -1.1 -1.2 0.39 0.92 0.40 -0.13

From this we can see the following:

a) The magnitudes of the constants can only be calculated

with large uncertainties.

b) The magnitudes of the constants a5 have the same order

of magnitude as those of a4; therefore, it does not

seem justified to ignore the additional term weighted

with a5.
c) For the plate and the annulus under consideration,

there are different optimum values of a4 , a5. For

the plate in the center we have

a 4 = 1. a5 = -1.

and for the annulus with R2/Rl = 5: we have

a 4 = 0.6. a 5 
= 0.4

The reason for these differences could be that the

minimum of the production term is closest to the inner

wall for the annulus than the maximum of the average

velocity profile. The approximation theorem assumes

that these locations coincide. From these results it\

becomes clear that new trial solutions must be developed
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for approximating the shear stresses as well as the length

production term, for which the coincidence of the zero

point of these variables and the maximum of the average

velocity profile does not have to be assumed in the

trial solution. /106

10.5.2. _Pressure Deformation Velocity Correlation

10.5.2.1. Calculation of Terms to be Approximated

Turbulence models which contain transport equations for i'j

require models for correlations

These terms cause the energy exchange of fluctuation components

of high intensity to those having a lower intensity [108, 115,

p. 123, 53, p. 2531. These correlations are calculated only

from the coarse structure of the numerical solutions.l Figures|

60 and 61 show PUll, PU22, PU33, PUl3 for one plate and annulus

channel. Figure 62 showed the various results for PUll alone.

Figures 60 and 61 show that the calculated correlations correspond

to the expected variation. PUll is negative and PU22, PU33 are

positive. This means that because of the pressure, energy is

transferred from the axial component to the other components.

PUl3 shows the negative proportionality with the shear stress (r' I

as predicted by Rotta [108]. Figure 62 shows that there are

differences in the correlation magnitudes for the various cases.

The fact that the magnitudes do not increase with the number of

meshes apparently proves the fact that the correlations con-

sidered are indeed represented by the coarse structure. On thel

other hand, PUll has the smallest magnitude for the case K4.

This is probably due to deficient stationary conditions.
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10.5.2.2. Determination of the Constant k

If we use the model trial solution of Rotta (Al-48) and

<c> is calculated from

where L is given by Chapter 10.5.1.1 and we use the working

variable
a2 = 1,

then it is possible to calculate the "constant" kp. As expected

(Al-48) only apply for homogeneous turbulence [108] and different

values KP.. (z) are obtained for the various indices i, j of PUij

and different locations z, as shown in Figures 63, 64. As a rule

the values are all positive as predicted. The average value is

0.5. If instead of a2=1 we use the value suggested by Rotta [116]

a2 =0.18, then the magnitudes of the constants will be at 2.8 on

the average and then agree well with the 2.5 which follows from

experiments [115, p. 126]. After this paper there should be a /107

further evaluation of the numerical results in order to consider

the inhomogenuity of the turbulence in the model. In addition,

the often-discussed relationship [4] between pressure fluctuations

(Figures 50, 51) and the velocity fluctuations could be investi-

gated. Obviously we have proven the usefulness of the numerical

method for this purpose by means of the evaluations given above.

11. CONCLUSIONS /108

11.1. Summary of the Most Important Results

A numerical differencing method is presented with which it

is possible to simulate three-dimensional, unsteady, incom-

pressible turbulent momentum transport for Reynolds number

Rem>105 in plate and, for the first time, in concentric

annulus channels by direct integration of the Navier-Stokes

equations.
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This method is realized in the program TURBIT-1. The

maximum useable number of difference meshes is not restricted

by the available storage because of a dynamic data management

system, but only by the allowable computation times. Eight

different cases were simulated, and in two cases, the flow

space under consideration was divided into 64*32*32=65536 meshes.

This is much higher than mesh numbers used earlier.

Based on this still insufficient number of meshes, a fine

structure model is required with which it is possible to calculate

Reynold stresses in an approximate way, which appear as unknown

variables in the averaging of the Navier-Stokes equations over

one difference grid. It is shown that these Reynolds stresses

represent area average values of the fluctuation velocity

correlations and not volume average values. In this paper we

develop a model which differs from earlier suggestions [29, 81] by

the following characteristics:

A distinction is made between the locally isotropic and the

inomogeneous contribution. The locally isotropic contribu-1

tion vanishes according to definition when the time average

is taken. The inhomogeneous part makes it possible to

apply the method even for relatively large meshes.

The model considers the different dimensions of the difference

meshes in the various directions, as well as the difference

quotients used. This is an important assumption for the

applicability of the method for curvilinear coordinates,

where the mesh shape must vary with location.

The turbulent viscosity is calculated according to a trial

solution of the Boussinesq type from the macroscopic velocity

deformation and the kinetic energy of the fluctuation motion

within a mesh. A special transport equation is integrated
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for this purpose. / 109

The model for the locally isotropic part of the fine structure

is calculated essentially exactly from the assumption of

locally isotropic turbulence with the Kolmogorov spectrum.

The solutions of the complicated integrals which occur in

this case are approximated by convenient approximations.

By evaluating known experimental results, it is shown that the

assumption of a locally isotropic fine structure model is valid for

Reynolds numbers Re > 105 if the mesh edge lengths are less than

about 1/30 of the distance between the walls.

The difference method allows radial non-equidistant meshes.

Correspondingly, according to the Neumann criterion, stability

criteria are established for the linearized difference equations,

of the type that have not existed before for such complicated

formulas. Among other things, it is shown that the DuFort-

Frankel model for approximating the diffusion terms in multi-

dimensional flows with small viscosities and simultaneous con-

vection is Inot suitable. The accuracy of the differencing method

is discussed. The pressure is exactly solved in an effective ive

way by solving the Poisson equation using the fast Fourier

transformation, except for rounding errors.

Numerical results have been given for plate flow and one

annulus channel (R2/R1=5). Four cases were presented for both

problems, and they differ as to the number of difference meshes

and period lengths. The numerical results agree well with the

experimental values. This is especially true for the velocity

profile and the average velocity fluctuations, where we found

a substantial improvement over the results of Dearforff [29].

The results are mostly independent of the mesh number used.

Physically reasonable results are already obtained for 32-16*16
=

8192 meshes. In addition it was shown that the additional effort
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for integrating the fine structure energy equation is not necessary.

Problems occur in the quantitative determination of the fine

structure model and in the calculation of the wall shear stresses.

It is shown that the method is a useful tool for the quanti-

tative determination of turbulence models, using the example of

the energy-length model and the pressure-velocity deformation

correlation. In particular it is possible to simulate those

terms which are primarily determined by the coarse structure of

turbulence. From the numerical results, it is possible to also

calculate quantities which cannot be measured dr are difficult to

measure.

11.2. Suggestions for the Application and Further Develop- /110

ment of the Methods Presented

In the future the methods developed will be used to test

turbulence models, to complete such models and to improve such

models. In some cases it will be possible to simply refer to the

already available space velocity fields without any further

integration.

Then one should attempt to remove the deficiencies of the

model which were discussed above. Among these we have the

following:

- Consideration of the spectrum for small wave numbers

(Chapter 5.2.2.5.2).

- Consideration of the random nature (Chapter 5.2.2.5.1

- as well as A5.1)j and the removal of the assumption of local

isotropy for large mesh sizes.

The program can be extended to annulus flows with simultaneous

rotation of the walls or induced angular momentum, as well as

flows in four-cornered channels, where it will then be possible
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to also consider secondary flows. This can be done without any

substantial increased theoretical work. It is more difficult to

simulate recirculating flows, but this seems possible, such as for

example flows around obstacles [75], around buildings (houses,

cooling towers, etc.) [63] and around ribs. One assumption to be

made here is that there is a limited flow space with boundary

conditions defined on all sides (for example, periodic boundary

conditions). The simulation of tube flows or similar problems

will be difficult, for which the natural coordinates have singular

points.

In addition, the turbulent transport of scala' variables such

as for example the enthalpy Ican be simulated using the momentum.

The additional effort is not excessive, because four of the

quantities (3 velocity components, one energy) are already con-

tained in the method. An additional variable will therefore

require only about 25% more effort. Fine structure models having

a similar accuracy as well as momentum models do not yet exist,

especially when one wants to consider small Prandtl numbers, for

example. However, it seems possible that a quantitative model

can be derived from the theory of isotropic turbulence and by

measuring the corresponding spectra [17, 166]. With a major

effort, it will probably be possible to investigate problems of

environment and local meteorology using the method discussed here.

For example, the stability of the atmosphere (already treated by

Dearforff [331 for similar problems) could be investigated when

there are large heat sources concentrated in space, such as for

example power generating stations.
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APPENDIX 1

The Theory of Isotropic Turbulence and Its Experimental Verifi-

cation

In this section we will develop the theoretical bases in

detail which are required from the theory of isotropic turbulence

so that the fine structure model can be determined quantitatively.

The local isotropic condition and the Kolmogorov spectrum

are especially important here. We will report on the experimental

verification of these factors.

Al.l. Kinematics of Isotropic Turbulence

In this chapter we will describe and define a number of

quantities for describing isotropic turbulence. We will derive

relationships (according to [53]) which follow only from the

invariance condition of isotropy as well as from the continuity

equation (1-6). These relationships are therefore of a kinematic

nature.

Al.1.1. Correlation R..(r)
- - - - -- i -

In order to determine the fine structure model we will

require correlations of velocities at two locations. We define

the two-point correlation as follows [53, 66]

R;J (7 -(x- - " (Al-i)

For isotropic turbulence because of the invariance with respect

to translation we have

R. ( ) = () I (Al-2)
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From the invariance with respect to rotation we have [66]:

1.

Here F and G are scala functions of the magnitude of r

4,(Al
-4)

which can be interpreted as longitudinal and transverse

correlation:

: -r e4(4 IX '1- c ) (A15)

1(4) K : - (:f (Al-6)

E ' r

Because of the continuity equation we have: /112

- R (_) -0 (Al-7)

from which it follows that [66]:

G (- -
(Al-8)

A1.1.2. Energy Spectrum

A turbulent flow can be imagined as a superposition of

trigonometric velocity functions where the position x is a

variable and with different wave numbers k [132]:

k = k11 k2, k is the wave number vector with the dimension

[1/length]. It is possible to determine the energy contribution

of the velocity field within a certain wave number interval.
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The distribution of energy into various wave number regions is

called the energy spectrum. A distinction is made between a

"one-dimensional energy spectrum E1 (k)", a "three-dimensional

tensor energy spectrum E..(k)" and a "three-dimensional, average

(scalar) energy spectrum E(k)".

The tensor energy spectrum E ij(k) is defined as the Fourier

transform of the correlation Rij(r) [531.

" S- S R C () eAp f A. _ :t I1 (Al-10)

The one-dimensional spectrum E1 (kl) is defined as the

(one-dimensional) Fourier transform of the longitudinal correla-

tion F(rl) according to (Al-5)

E kB, )= -:LT F( } C -e- f- oF 7 (Al-II)

The three-dimensional scalar spectrum E(k) is finally defined

as the integral of E. (k) over all wave numbers k, which have a

magnitude of k:

E (A) S 5 Ed A.)
I_= a (Al-12)

In practice, only Eij(k) can be described mathematically. /113
E1 (kl) can be determined by measuring the correlation F(r).

We will be most interested in E(k) so that the following calcu-

lations will be needed [531

4 (A, A)n At (Al-13)

Jjust like (Al-3,8) we can show that:

A-e E,"( 4 f / (AI-15)
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A.1.1.3. Relationshipsbetween the Correlations and

the Scalar Energy SpectrumE(k)

According to Hinze [53] as a consequence of (Al-3, 5, 10, 12)

we have:

Flo) =2 5 AS3 c ( " (Al-16)

Because of (Al-3) and (Al-8) we can therefore determine R. (r),
if E(k) is known using (Al-ll) we can also determine R.. (r) from

13
one-dimensional measurements.

In the following we will derive a few formulas which are

suitable for the direct calculation of R..ij(r) if E(k) is known

and also can be used when E(k) is singular at k=O in a way which
-2

is weaker than k-2

First we will consider Rll(r) and R 33 are found in a similar

way.

From (Al-3) and (Al-8) it follows that:

If Equation (Al-16) is substituted for F(r) and if we

subtract R11 (0) in order to avoid the singularity at k equal to

zero, we find

) ) , (Al-18)

where

A (A) C ( o 4ri) 2j (Al-19)

and

150 (r
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A series expansion which is valid in the range from 0 4 rk£ .- /114j
-7 ueiaexcept for an error of 10 and which is useful for the numerical

evaluation* of the integral for a small k'r for arbitrary E(k)

results in **:

A -A-3) Ad I + (AI) as -ollows
45) ) = A -r 4A... -AS l40 15 6?0 9

It can be seen that the integrand is still not non-singular if we
-n/

have E(k)- k with n<2.

The other correlations R.ij(r) for i j are then found

according to (Al-3) and (Al-8) as follows

P'4' -R(Al-21)

from the formulas given above.

Al 1. 4 Relationships between the Suare of theDeforma-

tionVelocity, Dissipationand Energy Spectrum

and Correlations. respectively

The dissipation 6 according to (1-16) is defined as follows:

Because of the following relationship which can be derived from

the definition (Al-1) for isotropic turbulence

For the Kolmogorov spectrum, an analytical integration is
possible, see Chapter 4.3.6.

* When such series expansions are determined, FORMAC [135]
is found to be very helpful.
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Ak a axe (Al-22)
we havel

(Al-23)

and therefore
/115

=K /, ( F'r) (A1-24)

From (4-16, 24) it also follows that

4 = EA) A A (Al-25)

and therefore we find the following for the average square of

the deformation velocity

D- 2-0(/Y J (A1-26)

<i, 10 r' o(Al-27)

From (Al-24) we find

a (r) 2
' .- E )d (Al-28)

and in general we have [115, p. 991:

152 a (Al-29)
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A1.2 Energy Spectra Based on Models of the Dynamics of

Locally Isotropic Turbulence

A1.2.1. Summary

In the previous chapter we saw that many variables used to

describe isotropic turbulence are purely kinematic in nature if

the scalar energy spectrumIE(k) is known. Figure 6. shows the

principal variation of the energy spectrum for isotropic turbu-

lence.

E(k) is zero for k = 0, because for isotropic turbulence the

average velocity is zero. E(k) then increases and has a maximum

at the wave numbers - -- , and L is considered to be( Lmax
the diameter of those turbulence balls which carry the greatest

part of the kinetic energy of the fluctuation motion. At large

wave numbers (according to equation (Al-25)) the molecular

viscosity forces bring about a conversion of the kinetic energy

into heat and E(k) then goes to zero for large k. For very

large wave numbers, another maximum could be possible which

would represent the Brownian molecular motion. In order to be /116

able to consider the flow as a continuum (according to the assumpt-

ion of Chapter 1.3) this maximum must be located at wave numbers

which are much greater than the wave numbers for which the spectrum

becomes zero because of the molecular viscosity.

We will now assume that using the differencing method, the

wave number range can be explicitly resolved in the grid between

k = 0 and k=kgrid , where we at least have:

kgrid > kmax

The region which cannot be resolved in the grid, that is the fine

structure, corresponds to wave numbers kkgril. Since we require
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models for this fine structure, we will present a turbulent

model with which it is possible to give a quantitative description

of the energy spectrum E(k) for kkgri .

In the following section we will discuss the ideas of energy

transport set forth by Kolmogorov [67], Weizsdcker [139],

and others [92, 93, 52], and this will finally result in a trial

solution for E(k) based on dimensional analysis. Part of the

model can be explained from consideration of the exact equations

[103].

A1.2.2Model of Energy_Transport in the Wave Number

Space ("Cascade Process")

For sufficiently large Reynolds numbers it is possible to

look upon a turbulent flow as the result of a transition of

various sizes of vortices (" turbulence balls" or "spectral|

elements"). Only the largest of these vortices are a direct

consequence of the instability of the average flow. The motion

of the largest vortices itself is unstable and produces vortices

having a smaller characteristic length or a larger characteristic

wave number, respectively.

Taylor-Green [131] gave an explanation for this instability.

Accordingly, a turbulence ball having a diameter do and a rotation

w is "swelled" because of turbulent diffusion and (as I would

like to add) centrifugal acceleration. However, since we have

its rotation will increase in proportion to the diameter d. The /117

ball can only "swell" up to the point where the dissipation E&Vwj

brings about its decomposition into smaller vortices.
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For an incompressible fluid, we can only have an enlargement

of the turbulence ball in the radial direction if fluid can flow

to the ball parallel to the rotation axis. This is a good

example which shows that certain flow processes in turbulent

flow can only occur in three dimensions.

After a large number of such "cascade processes" have

occurred, the characteristic lengths are so small that the

viscosity forces are greater than the inertia forces (the

Reynolds number formed with the length becomes small)and the

kinetic energy is transformed into heat. It is important to note

that the viscosity forces are only effective for small balls or

large wave numbers. According to Kolmogorov and others, it is

postulated that in wave number space there is a range ko <k<k
in which only the inertia forces are effective. This range is

called the "inertial subrange" or "range determined by inertia

forces". In this range, neither the viscosity v nor the

macroscopic geometry, i.e. the manner of producing the large

turbulence balls, are of any consequence.

Al.2.3. Kolmogorov-Pao Spectrum Kolmogorov Length

According to the model described above, the energy spectrum

in the inertial subrange can only be determined by the sizes of

the balls or their wave number k as well as by the energy trans-

port from the small wave numbers to the large wave numbers.

In the final analysis, this is determined by the total dissipa-

tion <c>. From a dimensional analysis we find the following con-

clusion

ECA <6> (Al-30)

Here a is the Kolmogorov constant (see Chapter A1.2.4 for the

value). The upper limit k of the inertial subrange is given by
0

f/ao (Al-31)
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where L is an integral length scale such as for example the
0

Prandtl mixing length, which has the order of magnitude between

10- 2 to 10-1. The upper limit

(Al-32)

is characterized by the "Kolmogorov length" n (see Chapter

1.6.1) which characterizes the ball diameter for which the

viscosity forces and the inertia forces which cause energy

transport (proportional to <e>) fromlthe small wave numbers to the

large wave numbers have the same order of magnitude. From a

dimensional analysis we find in this case

VY(Al-33)

Based on the exact model of Pao [1031, we find the following for

the spectrum.

Therefore we assume that the missing proportionality factor in

(4-33) is equal to one. The Kolmogorov spectrum (4-30)

therefore applies in a range

4 (Al-35)

where it is probably more appropriate to replace the symbol <

by the symbol <<. See Chapter 1.6.1 and Figure 2 for an

estimation of the order of magnitude of n.

A1.2.4. The Magnitude of the KolmogorovConstants

Table 3 gives information on measurements, theoretical

estimates and recommendations for the magnitude of the Kolmo-

gorov constant a. It can be seen that the measured values

scatter between 1.41 and 1.7 for the various types of flows

(also in a channel flow). Therefore, the value

o56. (A1-36)
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seems reasonable and will be used in this paper.

A1.2.5. The Spectrum Outside of the Region Determined

by Inertia Forces

For very small wave numbers, theoretical predictions [53,115]

state that either

10(Al-37)

or

g . (Al-38)

/119

For the range k>k , Heisenberg gave the following

spectrum [52]1

For k<< we also find the Kolmogorov spectrum from this. For

k>> we find the proportionality k - 7

$ > (A1-40)

However, this cannot be valid for arbitrarily large wave

numbers, because otherwise integrals of the type

would no longer exist for l"m , in contrast to the higher

derivatives for the longitudinal correlations F(r) according to

(Al-24). Therefore it seems that the Pao spectrum (Al-34)

is more general.
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Al.2.6. Calculation of the Correlation for Turbulence

with theKolmogorov Spectrum

If E(k) is substituted in (Al-18) according to (Al-30), then

using the auxiliary formulas [13]

1 ,1r Kf ,% (Al-41)

c's(A' dIX -4 C -i-- N - j ( (X) O,'xXh  k-f X -4 M-4 0"_ (Al-42)

and partial integration, and considering the series expansion 
for

X=O as well as

v =r/'( dx A ) (A1-43)

r(3) 2.6g 3r (Al-44)

we finally find

4J' R2 3 2r' / (Al-!I5)

(similarly R22 , R 3) as well as using (Al-21)

R.. (-r-) = , (Al-46)

These results can, for example, be found in [80, 53]; the /120

derivations used here make it possible to calculate the correla-

tions for other spectra numerically, for example for the Pao

spectrum.

Just as the Kolmogorov spectrum is only valid in al

limited wave number region (Al-35) these correlations only apply

in a limited range
i (A1-47)

This becomes clear if we consider that in contrast to (Al-24)

from (Al-45),we would have
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0= Y= / (A-48)

and in contrast to experience, R 1(r) would go to -c for r4o .

A correlation which is valid for O < r LO and which in addition

agrees exactly with (Al-24) is obtained when the Pao spectrum

(Al-34) is used. However, the lower limit is non-critical for

Reynolds numbers Re p 106' according to Figure 2.

A1.3 Experimental Verification of the Validity of Local

Isotropic Conditions and the Kolmogorov Spectrum

A1.3.1 Local Isotropy

There are numerous experimental proofs of the existence of

local isotropy in turbulent flows which are macroscopically

anisotropic. Pao [103] mentions 18 references in this regard.1

The reason for the existence of local isotropy is the effect of

the pressure due to incompressibility. As Rotta [108, 115,

p. 1231 showed, the pressure-velocity correlations bring about

an energy exchange between the velocity fluctuations in the

various directions, so that energy is transferred from components

with a strong fluctuation intensity to components with a weaker

intensity, until there is an isotropic energy distribution.

Rotta suggested the following quantitative trial solutions for

this

In agreement with measurements of Uberoi [138] we have

p a .C t (Al-49)

as an estimate.
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In the following we will mention three papers on the

proof of local isotropy. Townsend [133] investigated the

wake flow behind a dylinder in a flow by means of experiments.

He showed that the velocity-fluctuation field referred to

prime averages satisfies the relationships (Al-23) within the

framework of measurement accuracy for isotropic conditions.

Laufer [76,77] shows that for a quasi plate flow with

e -6.0I4o0. 4 and for wave numbers*
max

k A 12.5

we have

E1 ,(kl) =

E11 (k 1)

i.e. the local contribution of the Reynolds stresses <%Ius' /
vanishes for these wave numbers, just as in the case of isotropic

turbulence for all wave numbers.

Since in a grid

KM = 2 x k

meshes are required to represent the oscillations with a dimen-

sionless wave number k, approximately 25 meshes were required

as shown in Figure 7, in order to be able to assume local

isotropy within the mesh.

Laufer measured velocities as a function of time at a position

and determined spectra as a function of frequency n. The re-

calculation of frequencies into dimensionless wave numbers

is usually done based on the Taylor hypothesis of "frozen
turbulence" [130] according to the formula

where
D= -. 127m, <(4= 15m/s
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Similar data is obtained from the measurements of Comte-Bellot

[18] for Reynolds numbers 114ooo Rem K 460000 in a plate flow.

Figures 8 to 10 show spectra E22 (k1 ) and E33 (k1 ) as well as

spectra calculated from E11 (kl) according to the relationship

(Al-15) applicable for isotropic turbulence at X3 = 0.5, 0.23, 0.02

for Rem = 240000. In the center X3 = 0.5 and about half-way be-

tween the center and the wall, (X3 =10.23) there is already suffi-

ciently good agreement between the spectra for relatively small

wave numbers corresponding to K,.5I301 meshes. Consequently we

have determined local isotropic conditions. In the immediate

vicinity of the wall (X3 = 0.02), however, this is only valid

after KM 1 300.1 For other Reynolds numbers, the results are only

slightly different.

/122
Based on these results, we can assume local isotropic condi-

tions within a mesh for Re F 105 except in the vicinity of the
m

wall, if KM , 30 I .

A1.3.2. Kolmogorov Spectrum

Laufer [76,77] was not able to find a Kolmogorov spectrum in

his measurements of a quasi-plate flow at max 60 0 0 1 . The
-7measured spectrum corresponded more to the k variation according

to Heisenberg (Al-40). However, Laufer indicates that there are

uncertainties in the measurements. Nevertheless, it seems possible

that the limits ko and k1 (A4-31,32) coincide for such small

Reynolds numbers.

On the other hand, Comte-Bellot [18] was able to demonstrate

a spectrum similar to the Kolmogorov spectrum for a similar geometry

and 114000 S Rein 46000. This is shown in Figure 11 for

X 3= 0.22, for example. Accordingly, the limiting wave numbers

for RE _ 240000 are such that for the mesh numbersm --
15 KM 325 161" 161



we can assume that the Kolmogorov spectrum exists for the fine

structure. The limits increase slightly with Reynolds number.

The upper limit corresponds to the estimation given in Figure 2.

Even in the vicinity of the wall (X3 = 0.06) at wave numbers KM201

there is a k- 5 / 3 dependence of the spectrum.

Therefore we can assume that for Rem lo and mesh numbers

KMg20 (in one direction) that a spectrum according to Kolmogorov

(Al-30) exists for the fine structure.

APPENDIX 2
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Calculation of Correlations Between Space Average Values

In this appendix we will prepare the fundamentals for the

quantitative determination of the fine structure model. We will

assume isotropic turbulence with the Kolmogorov spectrum and will

quantitatively determine the time averages of products of pairs

of velocities for velocity derivatives averaged over volumes.

A2.1. Calculation of the Volume Correlations which Occur

In the following we will calculate the volume correlations

S P,,ldefined according to (4-20), which are the averaging

volumes used for Cartesian coordinates in this paper. Uberoi-

Kavasznay [136] published graphs of the corresponding results

for line, circular area and spherical volumes with V =V 2. Here

we will consider rectangular volumes and will algebraically

determine the volume correlations.

A2.1.1. n-Dimensional Rectangular Volumes V =V2=V

The averaging volume V considered is defined by

(A2-1)
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The weighting functions]K(s) are therefore given by

where
4/H. for / 4,./Z (A2-3)

= o otherwise

From this it is possible to calculate zil)

0 iE (A2-4)

Convolution integrals over rectangular distributions correspond

to the individual integrals. This results in triangular distri-

butions [91 according to:

Y4.1 (01 /' g (A2-5)

/ 124

A2.1.2. V 1, V2 Rectangular Area- "Volumes" with

Different Orientations

In addition to volumes V1 and V2 which are equal and can

cover each other, in this paper we will also use volume correla-

tions between two rectangular areas having different orthogonal

directions of the surface normals. The following sketbh shows

one basic possibility. All of the other possibilities are the

result of rotating the coordinate system.

T

163



The area centers coincide. The volumes are defined by

VA  /Z -,2,=0 A / , /2 (A2-6)

V2 :0 . /; I".: H,./2 1102_ H3 /A

The corresponding weighting functions K (s), j=1,2

are X I
K ( 4)=F . ,f j=tj 2  (A2-7)

with

w<43 J3 = k23 (6r ) =  [ 4/3 for 43 14 H3/Z

43 otherwise

/H 4for I4-/ H4 /2

K4 4  ) otherwise

k (-tj = (40)

ki (2 for /11/d H4/Z

otherwise

S is the Dirac function:

Both weighting functions satisfy the normalization condition

(4-14). For this, according to the definition, the volume

correlation is:

3

f±( ff~, K ( *.). , - . Z /(')dp,.
3
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This means that convolution integrals with respect to yl and y2  /i_5

must be determined among rectangular functions and Dirac functions.1

Both of these again result in rectangular functions. Just as in

5.2.3.1, for y3 we again obtain a triangular function

4'fa ( = r , .,3. c;(oK- i for (n, 4i2) (ita/,) (A2-8)

f2 3 otherwise

A2.2. Calculation of the Average Energies

The correlations to be calculated according to (4-24) are

the following:
V - (A2-9)

where V is defined by
n

n i X- Xe; (A2-10)

From (4-21, A2-5) it follows that:

(Y14 = '~ 77 I*- irrti dZA X I(A2-ll)

Because of (4-5) and (4-38) we have:

1 [RL ] Rj i o;} = <'~e> / (A2-12)

If all lenths are normalized with h=' "V , it follows that

<' '> 1 1/1 t' , '', " ,' " ) (A2-13)

where
1h (A2-14)

This integral can be determined analytically for n = 1:

E () E5 (A2-15)
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For volumes of equal length 4A= we find the following

numerical result:

E2(1,1) = 0.6293 (A2-16)

E3(1,1,1)--0.7461 (A2-17)

Since we must always have . , the volume region V

approaches a linear region for z,-- ooi and therefore we have

Er, 16( 1 kll../, z~k ) -_ ..- b J  ~U 1 (A2-18)

The numerical solution of the integrals for various edge lengths

i,- and for n = 0,1,2,3 can be approximated with the following

formula with a maximum error of 1%

4Z , ) = 0, 15( h,. ) (A2-19)

and we find the following value by a least squares fit

A= O. ?96? I

and this approximation function satisfies the limiting value

condition (A2-18) exactly.

A2.3. Isotropic Properties of the Squares of the Deformation

Velocity

The time averaged squares of various space averages of the

deformation velocities to be calculated according to (4-23 ) to

(4-26) consist of the sums of nine sum terms characterized by

i, j:

3 3
2D = Z - (A2-20)
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It is sufficient to derive the method of determining g (M),

D2  (M) and M characterizes the grid.
k 1,2

M? Ax,, AA A X (A2-21)

The other sum terms can be calculated with the same methods,

if instead of M we use a suitably rotated grid, as given by the

following formulas

A CZ ,Ci- A W14 (A2-22)

1V , 2V described the required rotation:

(A2-23)

These relationships follow from geometrical considerations.

Therefore in the following we will first only consider kD,

A2.4. Reduction of the Squares of the Deformation Velocities

to Differences of "Space Correlations".

2
The following derivations will be done in detail for D1

D The results for the other variables are similar.
1 12" /127

A2.4.1. D 2

D11 is as follows according to (4-23):
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If we note the definition of the difference operator > , we have:

_ 2 .

-2 r tin wit thedef, .iion, fo 21 e- ,ind:
Since the individual terms do not depend on the actual values

X1 , x2 , x 3 but only on the differente vector, we have

S A- (A224)

A2.4.2 D2
1 12

Starting with the definitions, for ID2 we find:1 12

we can again collect a few terms, because the time averages do

4- 2./'V A A2 Y2 .IA

tions which are a consequence of (4-6)
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then we have

S = 2  -- -- 7 o,

(A2-25)

6X2 6p 0

A2.4.3. Similar Results /128
/128

Z, 4 (1 AX (A2-26)

D -VA 4LA()P~) I~1,I~O~(~-7

2 <22Ud(IrrA A
4,4- )))

3  W (A2-28)

6. 2 f < l-;- ,
22

-4*% <2 >bo; * 1< ' (, o o(A2-29)

1694

4-k <t2 "5

-I A -I~ C r~ IM

(A2-30)
;i ZAA~l~i/01 .0)/ V UI ( 3 4X41 , 0, //~
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4 0/0

iNL < - x, O) (A2-31)3UL

+ 017 U (2o o0) *('( 0 ( ) Yd~o%

3L7, 21Z 2A dX~-x 2-L44

A2.4.4. Definition /129

We should note: the squares of the deformation velocity

averaged over time according to (4-23) to (4-26) can be calculated

if the "space correlations" 4

are known. In particular we require

(A2-32)

17 0

d (A

d4 ~d~pxY, U4 V,)~
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The other correlations<ft 4 (Ofcan be calculated from dl

corresponding to the development in Chapter A2.3:

(A2-33)

Also we can calculate < 0)Y according to

A- ((A2-34

because the exchange averaging operations lead to the same volume

correlations as according to (4-20).

The correlations dk, k=1,2,...,5 defined above will be

calculated in the following section.

A2.5 Calculation of the Correlations Defined in A2.4.4

The calculation of the correlations dk'LY); k=1,2,..,5

according to Chapter A2.4.4, is carried out using the methods

prepared in Chapters 4.2 and A2.1.2, where R11(r) and R 1 2 (r)

are given by (4-5) and (4-6) and f2 is given by (4-39).

A2.5.1. Solution in Integral Form /130

We define the following abbreviations

Therefore the results can be given in integral form
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h1A3

4.11 :t (. -rl)''v 1 oft (A2-37)
2 3= / 2 *

4 
.4

hf 2 f
'-L - /~e~ dTtrZt53

_-2 J:''(4- otr
aT Z :2 t3 f .zf( _ I.z_

Gl (,dk A, 4 ,k , , , op A ce <4:,:C. , , , ,  (A-40)

(A2-42)

?4, AV V

43 I- (r, Z>1 )e cZ + e

44o IrZr £C- ~tt4~~~2I

f f 14 a" 5 (A2-42)

-h. - 3 Rt4 ev 72'.-f -r,;1124

Table 4 shows FORTRAN subprograms with which these integrals /131

can be calculated numerically. For the integration, the subpro-

gram QSF [65] is used which integrates equidistant tabulated

functions using the Simpson rule. The number NN of the support

values of an integration variable to be specified in the COMMON

region NNNNNN must be about 50 in order to have an accuracy of

10- 3 . The COMMON region CWORK contains the working region re-

quired for integration. It is designed for NN<100.
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A2.5.2. Limiting Valuesof the Integrals and Approxi-

mations

The numerical evaluation of the integrals given above requires

a large computation time. Therefore it is desirable to prepare

approximations which approximate these exact solutions as well as

possible. The approximations must provide the same results for

special values of the parameters. Among these we have the follow-

ing limiting values:

-f dA~(1 ,, L .4 o, )= q 0)"
L1 2 

2

X .2/3II,, *--'

41 . <( 1ooai 173,0/0> k 3

S-_ - POO

& I. c , (44 S4,4 =,§o) h ~2
-&Ao~U dljr(44 3 oo =7

31 /3

45.)O 3f 2.1

hA o0jk4 4 ? -

11( 4 E ( 2 f

00 '1M; C / If / 31O

e,4&1  013 (4, 14 43 0.2. 72/2

Lf300)20 "73
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/132

solutions at (h, h2, o, z, z2 ) = (1,1,1,0,0). These reference

4z, k dd( , 1, , 1, ,1,) )
1 03 .69

3 C4 .61 0

Since dl* is required the most for - and d5* is

on addition we require that the approximations for dk, k=1,2,3
must agree exactly with the numerically obtained integral

solutions at(1hl, h2, h3, l, z2) .16 d(1,1,0,0). These reference
values are:

k , (1,1,1,0,0)

1 o.6293

2 0.5506

3 o.61o4
Since d4* is required the most for d,4?-- ,=-d

only required for = / i= , the approximation must satis-
fy the following requirement in agreement with the numerical re-
sults:

d4* (1,1,1,1/2,1/2)= -0.1376 d5*(1,1,1,1/2,1 )-ao846/
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Approximations corresponding to these requirements are

shown in Table 5 in the form of FORTRAN subprograms. Table

6 contains a comparison of the results obtained by direct

integration or from the approximation functions. The errors of

the approximations are not especially small, but they can be tolera-

ted because the constants of the fine structure model calculated

according to the approximations deviate at the most by about 20%

from those for the exact solutions. /133

A2.6. Results for 2D2 and FED

Using the relationships derived in Chapter A2.3 to A2.5,

it is possible to calculate the quantities kD 2 and FED. These

results are best presented in the form of a program. Considering

the subprograms D11, D12, D13, D14 and FED1 given in Table 7,

the results are as follows after extracting the variables having

dimensions

3A~4Li9 A=-12 (A2-43)

f2' f3 arelgiven by (4-39, 40). See Chapter 4.3 for numerical

results.
/134

APPENDIX 3

Determination of. a Constant cl

Here we will report on the calculations of Smagorinsky and

Lilly of the value of the constant cl contained in the trial

solution
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U,.)55(b.,J/ 3 3 I.' (A3-l)

We will discuss the assumptions and approximations. In addition

we will summarize the experience of Deardorff and discuss his

method for calculating the kinetic energy. At the end of this

appendix we will calculate the constant cl according to methods

of this paper.

A3.1 Calculation of cl according to Smagorinsky

Smagorinsky [118] uses a trial solution corresponding to

(A3-1) for the two-dimensional, global, meteorological simulation

where

c, = k, (A3-2)

and k is the Karman constant [120]:

k : 0.4 (A3-3)

One obtains this result [32] if p and c are set equal to their

time-average values in a boundary layer with constant shear

stresses. For this we have the logarithmic wall lawI[120]:

< 1,, A E C./"w (A3-4)

(z' = wall distance, Ew a constant which considers wall roughness)

Here we therefore have

4 ,, (c,,.,)2 (A e)-2 (A3-5)

If the height at which p is being determined is equal to h,

then (A3-2) follows. This result can at best only apply for the

immediate vicinity of the wall, according to our assumption.
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A3.2. Calculation of cl according to Lilly [80, 81]

A3.2.1. AveragingOperation and Determination Equation

for c1

For the derivation of the mesh averages of the basic equa-

tions Lilly [80, 81] and Deardorff [29,33,441] made use ofj the

following averaging operations.

C:) (K Xh3,-i- S- " " /d 3d ¢d I( A 3- 6 )

k 1 /135

For the first one we have:

ex , L. " (A3-8)

and for the second one we have:

V-
VV- (A3(A3- 9)

Neither of the two averaging operations was selected con-

sistently. The basic equations for determining the constant c1
were derived by Lilly [81] using the first operation. Deardorff

[29] used the second operation, and in addition he used (A3-8)

as an approximation. The conservation equation for VT derived by

Lilly using (A3-6) has the following main terms:

= - .o L - -f44 ! D (A3-10)
3 E. .(O, + - (A3-10)

The convection and diffusion terms Konv and Diff are of no conse-

quence. 1-j is 'defined as

- V- (A3-11 v-
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and there is also a term corresponding to the dissipation. It is

assumed that the velocity field is locally isotropic and that it

has an energy spectrum E(k) which corresponds to the Kolmogorov

spectrum. The trial solution (A3-1) is substituted into (A3-10).

The additional term J. Ivanishes because of the continuity

equation -
, , v V 1 -

:e X 14 1j e' ,(A3-12)

For stationary and locally isotropic turbulence, averaged over

time we have

KWX> =kowy KDif 0 O (A3-13) /136

and therefore we obtain an equation for the determination of cl:

C 1:2f ] \ (A3-14)

Here we will use the approximation

as well as

(A3-16)

where e is defined (1-16). Therefore we have

Z (A3-17)

A3.2.2 Estimation of < (Dij []

According to (Al-27) we have

Co

r 178 (A3-18)
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If the cube-shaped mesh with edge lengths h is approximated by a

sphere with a diameter h and if we consider that only those parts

of the energy spectrum contribute to K.J)whose wave numbers

k k can be represented by the macroscopic structure of the

average velocity field, and if we assume the following according

to Lilly [81] .

o h
(A3-19)

it follows that

'~ f> AVtL(k)CA . (A3-20)

If we substitute (4-4) for E(k) according to definition, then we

have 3 (A3-21)

and therefore we obtain the following for c 1 together with

(A3-14):
C87 r- (A3-22)

For a = 1.5 we have

c1 = 0.173 (A3-23)
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A3.2.3 Numerical Calculation of_ <5 . for a Cube

Volume

If we assume the following approximation [80]:
< v- v

then because of (Al-23) we have:

(A3-25)
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(A3-24) only applies exactly, as Lilly [80] himself deter-

mined, if the averaging volume V includes the entire flow space.

Lilly [80] numerically calculated the correlations which occur

in (A3-25) according to Appendix 2 for a cube volume V having

equal side lengths and by using the averaging operation (A3-7).

For a = 1.5 he obtains the following result:

<- 'C >V3< (A3-26)

S . - (A3-27)

Lilly [80] also investigated the influence of difference formulas

on the constant c 1. For this he assumed that instead of

/r F r/-/ -(A3-28)

we must substitute the following in (A3-17)

- ----- -- v--(A3-29)

The following difference operator Ai is defined:

Ai Y (i) _( [ Y (& L' ) I (A3-30)

For the numerical evaluation of the expression (A3-28)

defined in this way, Lilly numerically evaluates six-fold inte-

grals according to the method given in Chapter 4.2.2 and obtains

the following results for a = 1.5:

(A3-31)

and
cl = 0.22. (A3-32)
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A3.3. Values of c1 according to Deardorff

Deardorff [29, 30, 31, 32, 33] performed numerical calcula-

tions for plate flows according to Chapter 1.5.3. The square of

the deformation velocity in (5-3) is calculated according to the

following difference formulas (using the notation in Chapter 3):

._ _ / 138

The calculations for the plate flow with a constant axial

pressure gradient [28, 29, 30] showed that the values of c1
calculated by Lilly using (A3-33) are too large. In order to

obtain turbulence statistics which would agree with experience,

c1 would have to be in the range

0.08< cl  0.12 (A3-34)

For the investigation of the stability of the atmosphere the

influence of buoyancy forces caused by a temperature gradient and

the Coriolis acceleration [33], which is considered as a plate

flow, it was found that we also have c " 0.13 in the isothermal1-
case (except in the wall mesh, where the calculations are performed

with cl = 0.10). However

c1 0.21 (A3-35)

is used when there is a temperature gradient. This change is

jus.tified by the fact that a large contribution of the average

deformation velocity is made to (A3-33) because of the Coriolis

force in the isothermal case, which would lead to large turbulent

viscosities according to (5-3) if cl were not reduced. It was

found [33] that the value cl 1  0.21 can always be used if the

average velocity is first subtracted when .)tis calculated

according to (A3-33), therefore
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(A3-36)

+ 2 (d. ( .- cr>)).d 3. S J

J

A3.4. Calculation of the Kinetic Energy E'

The kinetic energy is an additional term in (A3-1), but

it can be treated together with the pressure per unit of mass.

Therefore it must not be explicitly known for the integration of

the momentum equations, but it is required for the evaluation.

A rough approximation corresponding to the approximation for

<- in Chapter A3.2.2, results in the following:

<E E ALi 1-k (A3-37)

and with (4-4):

4E>2/3 (A3-38)

With £) according to (A3-21) it follows that

> < .5-0.oo ') (A3-39)

Deardorff [29, 33] calculates while referring to Lilly [81

from the following equation

-- (A3-40)
V'= 1Z/ C -)ZI with C, =o.o, 'I

If p is given by (5-3) and c1 is given by (A3-32), it

follows that:
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The kinetic energies of the fluctuation velocities calculated by

Deardorff are therefore too large.

A3.5. Calculation of the Constant c1 using the Method of

Chapter 5.2.2.3.2. and of Appendix 2

If the trial solution (A3-1) is substituted in the conserva-

tion equation (3-31) for F7 and if the time average is taken

according to Chapter 5.2.2.3.2, and then if the average is taken

over the entire flow space and if one ignores the molecular dissi-

pation due to the macroscopic velocities, then with
'.

we obtain the following for constant cl

-44

where D and 2D 2 are defined by (4-25, 26).

If we use the results of Appendix 2 we find

D12, D13 are the FORTRAN subprograms given in Table 7. For

o= 1.5 =,f. we find the following numerical results:

A--: 4): . - o. o.o 0
(A3-46)

C .O. 24S= -

These values agree very well with the value cl=0.21, which

had proved itself in [331. Equation (A3-46) also showed that the

error in assuming (5-6) for the mesh sizes used by Deardorff [291

is small as far as the magnitude of the constant c1 is concerned.

However, this does not mean that the viscosities calculated with

this are correct for meshes not having equal lengths. This was
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discussed in Chapter 5. / 140

APPENDIX 4

Solution of the Poisson Equation using the Fast Fourier Transfor-

mation

A4.1. Problem

In Chapter 6.2.2 we established a Poisson equation with

Neumann boundary conditions for calculating the auxiliary

potential i or the true pressure p. Written out, it has the

following difference form for cylindrical coordinates (see

Section 5):

a) Periodicity in the ,zdirection:

b) A = 0 at the wall:

) - ,...,I , , __ ,. O] A . =-," ... k(A4- 3

Boundary conditions:

a) Periodicity in the Y:z direction:

r - Al . . r - i, ,. P0-

b) Oat the wall:

With these boundary conditions, 9 is determined to within

an additional constant. We must satisfy the following consistency

condition [87] to guarantee the existence of the solution:

kM (A4-4)

1=., JA --.
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A4.2. Solution Method

In the following we will describe the solution method,

the principle of which was first given by Hockney [55]. A direct

method is used which is much faster than the iteration method [16]

and does not have any stability problems [61]. The method is

very similar to the one used by Williams [14111. The periodic

boundary conditions make it possible to use the fast Fourier

transformation routines.

In addition, the method used here makes it possible to use /141

variable mesh separations in the radial direction. In conjunction

with the transposition algorithm! described in [38, 125], the

method used here can also be used effectively if the fields i

and q, respectively, cannot be completely stored in storage [128].

The solution method is based on a series expansion of the

source term q and the solution in the azimuth and axial direction

into trigonometric functions, which identically satisfy the

periodic boundary conditions (A4-2):

- - inl4 (A4-5)

I ? t (A4-6)

No series expansion in terms of eigen functions is used in

the radial direction, because in this case it is necessary to

use Bessel functions, which are much more complicated numerically.

It is more advantageous to use complex eigen functions instead of

real eigen functions (sin and cos) (as in [141). This is because

instead of one product of two eigen functions, it will be necessary

to deal with four products. Also, special situations occur for

D=M=Olwhich are avoided when the complex notation is used [50].
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The complex coefficients CQ in (A4-6) can be calculated as

follows -based on the orthogonality properties of the eigen

functions
C A) "P. -__ : ,

The initial data qi,j,k consists of IM*JM real numbers

for K = const and the Fourier coefficients are made up of

CQ IM'JM complex numbers, which is twice as many individual

values. However, it is only necessary to store one-half of

this data because we have:

.= c44, 2,... , ,'- ';/2

CQ(l, , A/= Co (4' ,- ) (real)

(The star characterizes the conjugate complex value) /142

A4.3. Evaluation of the Fast Fourier Transformation (FFT)

Equation (A4-7)and Equation (A4-5), if CP values are known,

are calculated according to the fast Fourier (FFT) method

developed by Cooley and Tukey [19]. Reference [20] contains

a detailed description of this transformation. For the FFT,
the periodic properties of harmonic functions are exploited in

order to reduce a large number of multiplications to a single

multiplication. When the sums in (A4-5,7) are evaluated directly,

the number of multiplications increases in proportion to (~M.JM)2 .

For the FFT, the number of operations is only proportional to

(IM-JM)ln(IM.JM). The FFT therefore is especially effective

(also for transposition [125], if the factors IM and JM can be de-

composed into as many small prime numbers as possible. The al-

gorithms also become especially simple if these prime factors
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are all equal to two. Brenner [14] developed a program "FOUR2"

which corresponds to the FFT. It is used here.

A4.4 Establishment of the Difference Equation for CP

(Abbreviation CP CP /,r, p/, * A)

The coefficients CP/,,Aare determined from the difference equation

(A4-1), which is substituted into the trial solution (A4-5,6).

We find

A (A4-9)

4 C-I- O

/4C ox( r = .- (If- Cox ( )

equations forjthe complex coefficients C, ; k=o,1,2..., KM,M~+1/.

These equations have unique solutions only ift also follows that

because otherwise the solution is only determined up to an

additional constant,Ithat is, nly for --/40, . The case

/--0,0 must be treated separately. After dividing by -

we obtain the following result in an abbreviated form from-
(A(A4-9)

The equations (A4-9, 10, 11() representA C(A) Clinear (A-12)



where 8rA)t +C(A /t '14 c

D 'k) r - (A4-13)

A4.5. Solution of the Differential Equation for CP

A4.5.1. Case Vps.4 o

The system of equations (A4-12) can be solved for Y

using the Gaussian elimination algorithm, which is simple and

fast for such triple diagonal systems. However, there is a

simple recursion solution [111, 141], for these equations, which

corresponds to the Gaussian algorithm. In addition it is very

stable [111, p. 1981.

The following trial solution is used:

C P CP, = P(A) A . )M c .,-,_

From this it follows that:

We will substitute both relationships (A4-12) and therefore

we obtain the following conditions for arbitrary CP

E(k) = 1/(B(k)-C(k).E(K-1))

F(k) = (C(k)F(k-1)+D(k)).E(k)

The boundary condition (A4-11) is satisfied for k=l if

we have

E(O) = 1

F(O) = 0

Starting with these values it is possible to calculate all

the E(k), F(k) for k = 1,2....,KM from (A4-15). E(k) just like
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B(k) is independent of i,v and therefore cannot be calculated

once and for all as stated in [1411 . From the boundary

condition (A4-11) for k=KM and (A4-14) it follows that

C= (A4-16)

With this initial value then it is possible to calculate all the

C I for k=KM-l,KM-2,...,1, according to (A4-14).

A4.5.2. Case v,p = 0.0 Consistency Condition

For v =-I = o we may arbitrarily set, for example

C Po, =0

From the boundary condition (A4-11) and for (A4-12) it then

follows that

The remaining CPoo, can be calculated for k=3,4,...,KM accord-

ing to (A4-12) from

CPoo, = (-4) CP Po,o,A- - Ct'A-)CPo, , - D(A ) (A4-17)

In order to also satisfy the boundary condition k=KM (A4-11),

D(k) must satisfy a condition which corresponds to the consistency

condition (A4-4) and which will now be derived:

Using the following abbreviation for the gradient of CP

it follows from (A4-9) that

CQL&
and from (A4-11) it follows that O--=0
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By complete induction it is easily shown that we have

In order for the boundary conditions (A4-11) /145

9(M"12 =0

to be satisfied, we must therefore have

kk-

This condition is directly equivalent to the requirement (A4-4)

because for o and from (A4-7) it follows that

CQ - ___

Since qi'j'k is equal to the divergence of the velocity field

i0.O, l , and its component 1 must always be equal to zero

at the wall according to (6-5), the consistency condition given

above is always theoretically satisfied according to (A5-11).

Because of rounding errors, the sum (A4-4) can be slightly

different from zero. This can cause non-convergence of the

iteration solution procedure, as our own numerical experiments

have shown. The method described here is not sensitive to such

rounding errors.

The method described, therefore, has the following advantages:

- exact solution (if rounding errors are ignored) after

a finite computation time

- very small computation time (see Chapter 10)

The disadvantages are the requirement that the values IM, JM

be powers of 2. Also it is not possible to transfer the results

to complicated geometric boundaries.
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APPENDIX 5:

Accuracy and Consistency of the Difference Formulas

A5.1 Statistical Errors of the Linear Difference

Approximations /146

A typical linear difference approximation is the approxi-

mation
2- x -- ,,--)

~-
This approximation assumes that (x4 , xf )is a sufficiently

smooth field, so that linear interpolations are possible. For

locally homogeneous turbulence, this approximation is certainly

correct in the statistical sense. Nevertheless, the approximation

given above can have an error at a certain point in time, which

is characterized by the following standard deviation f:

Assuming locally isotropic turbulence, we find the following

according to Appendix 2:

(A5-3)

For meshes of equal side lengths, using (A2-40, 41, 42) we have

--: <0, AW'Z [.2 /,,, W/ 0, ,o]f= • (A5-4)

0. 0 6., dX

S 0o..253 -f42 <'t" A : (A5-5)

This statistical error therefore decreases as the mesh edge

length -xf/iis decreased, but only slowly according to the

power 1/3. This result is, of course, only to be applied in the
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region in which the Kolmogorov spectrum is valid 
according to

(4-6). For very large mesh sizes, where ~1 strive to

constant values for homogeneous turbulence, as well as for very

small mesh separations, where the smoothing becomes 
noticeable

because of the molecular viscosity, the error is probably 
smaller.

The result given above is therefore a pessimistic one.

If point velocities and not area averages 
were approximated

by arithmetic averaging according to

-4

then from (4-6) we obtain:

3-- 2 7 C" ""7I (A5-6) /147

i.e. the averaging operation reduces the error by about a

factor of 3 but does not change it in principle.

Just like in the fine structure model (Chapter 5.2.2.5.3),

instead of the deterministic approximation (A5-1) given above,

one could think of a statistical approximation which 
has an

average value corresponding to (A5-1). In contrast to the fine

structure model, we even have a trial solution for specifying the

standard deviation, given by (A5-5).

A5.2 Truncation Error

A5.2.1. Limited Phaseand Wave Number Resolution

As Orszag [96] discussed in great detail, difference

approximations lead to errors which can 
cause erroneous

amplitudes and phases of the solutions. These errors are

especially large for Fourier components corresponding 
to large

wave numbers. The phase errors would disappear if the Galerkin

method (see Chapter 1.5.2) were used. Deardorff [33] points out

192



that the energy spectra of the kinetic energy dissolved in the

grid drop off very rapidly at the maximum wave numbers which

can be resolved (approximately according to k ), so that these

errors have only a relatively small weight (see Figure 23).

With difference approximations for grids with an edge length

of Ax, it is in principle impossible to represent Fourier components

with wavelengths smaller than 2'Ax [94].

A5.2.2. Truncation Error of the Convective Terms

If we assume that the average velocity fields 9I can be

represented by Taylor series expansions, then it is possible to

determine the truncation error of the difference formulas. The

truncation errors of the convective terms are especially important

here. If we consider Clartesian coordinates, we obtain for

example - . -

(A5-7)

5 XI fX 4 - -3- 3 /148

It seems more favorable to use the approximation of Amsden-

Harlow [3] - .4

=___ (A5-8)

3

because here the truncation error does not have any second

derivative. This has a favorable effect on the stability

behavior. However, one disadvantage of this approximation is

the fact that the difference formulas do not correspond to the

conservation equations for kinetic energy, which can lead to

instabilities because of aliasing (see Chapter A5.3 and A5.4).

This type of approximation is therefore not used here, as was

done in [5 4 , 79, 94].
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A52.3. False Diffusion

False diffusion is discussed in [49], for example. It is

produced by the limited resolution capacity in the difference

grid for large gradients. For example, the function y(x) has a

ramp at xo 0

Ih the difference grids, it is only possible to represent the

gradient (y2-Y1 )/ A x as a maximum. The field y is therefore

artificially smoothed which appears as a false diffusion. This

error becomes large if the maximum gradient is not in the

direction of the coordinate line but along the diagonal of the

mesh. The mesh and length should therefore be parallel or per-

pendicular to the streamlines as much as possible. This

assumption is satisfied for the average flow.

A5.3. Aliasing Errors

The aliasing error is produced by nonlinear terms. It

was first demonstrated by Phillips [1001 for the convective

terms. Miyakoda [87] showed that it can be produced by non-

linear viscosity. This error is also discussed in [1,10,79,96,

100]. The error is based on the finite wave number resolution.

If two position dependent functions are multiplied which contain

both Fourier components with the wave numbers k = 0,1,2...,N,I /149

then a product is produced which contains Fourier components

with k = 0,1,2,..,2N. However, only the components with kNIl

can be represented by the difference grid. The components with

a higher wave number are added to the components with the smaller

wave numbers. In this way part of the physical energy transport

from small wave numbers to large wave numbers is reversed. This

effect can lead to instabilities. One solution for this is to
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structure the difference formulas in such a way that they con-

tain energy according to Chapter A5.4.

A5.4. Consistency with the Physical Conservation Laws

Based on the wall adhesion condition and the periodic

boundary conditions, if there are no field forces and if the

viscosities are zero, we have

Momentum conservation:

SS 2- -. dV= e 2, ,3 (A5-9)

Energy conservation:

y -o dV=O (A5-10)

where V is the total flow volume and the velocity field satis-

fies the continuity equation exactly. The different formulas

must be consistent with these physical laws and therefore we must

require that the sums over the corresponding difference approxi-

mations over all of the difference meshes also vanish.

These conservation laws apparently are satisfied for the

difference formulas of the momentum, because the convective

terms were used in their conservative form and therefore, for

example,
KM

3  k1 /k3- 1 (A5-11)
and the right side vanished because of u3 =0. A similar statement

can be proven for the energy according to [78]. However, it must

be assumed that the continuity equation is also satisfied exactly

in the difference form.
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/150

Piacsek-Williams [1051 derived difference formulas for

which the requirement for energy conservation is not necessary.

However, in this case, the momentum is only conserved if the

continuity equation is satisfied. Nevertheless, the suggestions of

Piacsek-Williams are attractive if the continuity equation is

exactly satisfied, for example because of the iterative solution

of the Poisson Equation (6-9), because it is probably more

important to conserve the energy than the momentum because

of the quadratic type of stability. In this paper, the continuity

equation is always satisfied to within a very small error because

of the very accurate pressure calculation. It seems that the

formulas of Piacsek-Williams are not required.

A5.5. Numerical Errors

As is well known, numerical errors are produced because

of the limited number of decimal or dual locations which are

available in the computer for representing floating decimal

numbers. This limited number of places is especially apparent

in the calculation of the difference of two approximately equal

numbers. For example, for three decimal places we have

0 164E2 - 0.163E2 = O.I??FfO

The difference is only accurate to one place in the example.

This effect is known for the calculation of differences, but

is usually ignored for the summation of a very large number of

numbers having the same order of magnitude in a sum accumulator.

For example, if a 3. floating point installation is used to

represent the addition of 10,000 numbers A(I) having the order

of magnitude of 1. according to the prescription FORTRAN:
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S = 0.

DO 1 I = 1,10000

4 S = S+A(I) ,

then after 1,000 summations, the intermediate result in S

differs by 3 powers of ten from the A(I), and the sum S no

longer changes because of

0.100E4 + O.1E1 = 0.100E4

Such numerical errors can be kept small if the following

rules are observed.

Difference formation: /151

Rule 1:

Transform the numbers such that their average value is equal

to zero.

Sum formation:

Rule 2:

When sum terms having different orders of magnitude are

summed in an accumulator, the sum must first be taken over the

smallest order of magnitude.

Rule 3:

When the sum of many numbers having the same order of

magnitude is taken, as many partiallsums as possible should be

formed, and the sum of them is then formed. The summation given

above is better programmed as follows:
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DO 1 I=1, 100

S1 = 0O

DO 2 J = 1, 100

2 S1 = S1+A(J+(I-1)*100)

1 SO = SO+S1

Rule 1 is considered by means of a Galileo transformation

(see Chapter 7.2). The other rules have been taken into account

in the programming.

/152

APPENDIX 6:

Stability of the Difference Formulas

A6.1. Linear Stability Analysis

A6.1.1. Summary and Linearization

In this chapter we will establish stability criteria for

the linearized difference formulas.

In addition to the formulas used

Type a) According to (6-4), jump method in time,

central difference quotients for convective

terms, time delayed diffusion terms

Type b) According to (5-100, 6-20, 24), Euler method

in the time "upwind" differences for the

convection terms
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another possible difference formula which has often been recommended

[42, 44, 112] is investigated.

Type c) Jump method in time, central difference formulas

for the convective terms and DuFort-Frankel method

[l11] for the diffusion terms

It is found that this method is worse than the other methods

for small viscosities for more than one dimension.

In addition we investigated the possibility of using "upwind"

differences for the convective terms for Type a) as well. We found

that the method would then become unstable. Therefore we did not

investigate the details.

The linearization refers to the following:1

- Assumption of constant convection velocities VX, V V.4

- Assumption of constant viscosities p

- Pressure gradients and field forces are ignored

- Decrease , of boundary conditions in all directions

In addition, the momentum equations are simplified so they

become uncoupled. This uncoupling is exactly valid for Cartesian

coordinates. In addition, equidistant meshes and isotropic

viscosities are assumed. In this way we obtain the following

linearized equations (y stands for one of the velocity components / 153

OxV,4 or the kinetic energy VE', respectively):

Type a) Yl',A- -, - (A6-1)
2At a

Type b) G0nd (A6-2)
Type b) ', ',A- ',J',oA 4 D9
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Type c) e,, A - l, DC (A6-3)

where

'= V .x  : -:, V g 1,. ,, v , A* &4 .g ~, (A6-4)

b 4 6)

- +  (A6-6)

- , , r ,',.A,---,,

- p 4 M2

IV v -..,

___ _ __ -4 , 1 v x I (AY#-k) A

0 _ Y A -P - __ (A6-8)
lk,4-fAL -2
0~c~j y

1 4r / 0 j=(

+.2dcp" (i. c 4) (A6-7)
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The notation for the "upwind" differences according to (A6-5)/15
4

corresponds to the suggestion of Kirsch [72].

A6.1.2. _General Stability_Critrion_ [111, 140]

The linear homogeneous difference equations can be represented

as follows in matrix form

AA- (A6-9)
SA-r. + Al. YijA

where

The vectors Al, A2 which are made up of seven elements each are

given in Table 8 for the various formula types. These difference

equations have the general solution

. el - (A6-10)

and kI , k 2 , k3 are arbitrary weight numbers. For the vectorY ,

because of ,f0 X = Cof; ) VA S 'x we have:

Y U .A E (A6-ll)

S. si (A,4?r) , 5s2  S(. Z1,Y); s3  A.,(A 3 4. ) (A6-12)

C Cor (A4 x) C2  coS (Arb); C E Co( (AAd,)
(A6-13)

S i C 2 -=(=f2,3

From (A6-9) we therefore find an equation for the variation

of the amplitude U with the time step n:
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UAj, A F U'. -- A2 U. (A6-14)

According to Richtmyer [111] the variation of the / 155

amplitudes for one step to the next time step n can be

described by M +L4

,j- / (A6-15)

with the amplification matrix

AG ;-E AZ.E

4 o (A6-16)

2 (A, +i8 j

4 o0

The real constants All, B1 1 , A1 2 , B1 2 are given in Table 9 for

the various formula types.

The eigenvalues of this amplification matrix G are

, = A,, + ,A 84 7 1 (A6-17)

The stability criterion according to Neumann [110, 111]

then results from the requirement that the amplitudes of the

perturbations U"; of the solution cannot increase when the

time step n is enlarged. From this we obtain the following

necessary condition

I4 =z (A6-18)
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This condition is also sufficient if G is equal to its hermitic

conjugate term [1101, which is assumed as a rule [110, 111, 73,

140].

Just like the requirement (A6-18), of course we have

/ (A6-19)

where

(A6-20)

Il4 ' = o'b ] ,b real

From this we can determine the maximum permissible time step

At, as will be done in the following sections for the individual

difference formula types.

A6.1.3. Results for the Permissible Time Step At

A6.1.3.1. Type a DifferenceFormulas (Jump,_Delayed_

Diffusion)

The permissible time step can only be specified in explicit

algebraic form for the extreme cases of negligible diffusion or

negligible convection:

Case a) Pure convection ~4~(4=0 or)

The eigenvalues 4 here have the following values

AX A + VV 3,

From I4, 1I-CI it follows that
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The minimum AtK' for

s,- sO(vx) , s,= '", (Vy) , s3-,=Sj,(v.,)
which results from this is

SVX I VP/ /IV I (A6-21)
K  AN

Case b) Pure diffusion ( V =V V = 0, r r)

The magnitudes of these eigenvalues have their maximum at

C = 2=C=-1,S=0 and we obtain the following permissible time

step

L4 - A 61 Ao-22)

Case c) Arbitrary parameter values

For the general case, it is necessary to determine the

permissible time step At numerically. For this, an optimization

program is used which operates according to the evolution strategy

[610]. The independent variables C1 , , C C3, Il, 12, 13, 14 where

are varied (14 is the sign in front of the square root in (A6-17))

so that a target function ZF is minimized. /157

By means of interval containment, and with a relative

accuracy of 10 - 4 , ZF produces the At>Wo so that the following

relationship holds for the variables specified above
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The numerically determined permissible At is a function

of 10 parameters:

Figure 12 shows a numerical value for

fA i, di r 40 ) (A6-24)

as a function of viscosity p for three values of the convection

velocity V = 10,30,50. For comparison purposes we also show
x A

.4A - jo, C,, fd o, (01 I/ 0.vS10 ,0 o -0 -d / o)0 (A6-25)
4* ( o o / o 0 . 4  o.o&~a ,I

as well as , ,.

6N -f 0, ., 0, c) " O .S0.o , f 4 0 "(A6-26)
-_

Af4 is the minimum of the permissible resulting time steps which

result for pure convection (AtK and pure diffusion d~4D) ,
respectively. At 2 is the asymptote which results for pure diffu-

sion corresponding to a viscosity which has been enlarged so much

that At2 takes on the same value for i = 0 as AtK . These compari-

son values can be calculated algebraically according to (A6-21,22).

From Figure 12 we can see the following:

a) The permissible time step decreases with increasing

viscosity p and increasing convection vellocity V
x

b) The permissible time step At is smaller than the value

AtK' AtD for the limiting cases a and b considered above.

c) The function At 2 is a conservative assumption for the

permissible time step At.
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The practical calculations are therefore carried out by a

time step determined by At 2 . As an additional safety factor,

it is reduced by a factor which is input, which typically has the

value of 0.5. /158

A6.1.3.2. Type b Difference Formula (Euler

Method "Upwind" Differences)

For this one step method, the amplification matrix G is re-

duced to a scalar value. The eigenvalue is

l v i - V-(

-S /

The magnitude of the eigenvalue has a maximum for if/ and

for C =C2=C =-1; S =S 2= =0. The permissible time step is

therefore

This result was derived in a different way by Krause [73, 74].

Figure 13 .shows At as a function of y for the same parameter

values as in (A6-24). The functions Atl, At2 also shown for

comparison purposes according to (A6-25, 26) clearly show that

for these difference formulas, the permissible time step At can

take on the same value as for Type a, corresponding to pure

convection. For pure diffusion, its value can be twice as large.

This means that the time step according to (A6-26) is also

conservative in this case, i.e. for the integration of the energy

equation (5-100).
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A6.1.3.3. Type c Difference Method (Jump Method

with Du-Fort-Frankel for the Diffusion

Terms)

In this case as well as for Type a, the permissible time

step At cannot be calculated algebraically for the general case.

For pure convection, we find the same permissible time step Atk
as for Type a, according to (A6-21). For pure diffusion
(V=V V, =V 7o)the magnitudes of the eigenvalues have a maximum

for C1=C2=C f-43 A ; S1- 2_3--0

(A6-28)

A ll=1-4 for di > 0.

that is, for pure diffusion the difference formulas according i
to Du Fort Frankel are always stable. (this result corresponds

to the three-dimensional generalization of the data in [111]).

/159

For the general case of simultaneous convection and diffusion,

the permissible time step must be calculated numerically as dis-

cussed in Chapter 6.1.3.1. Figure 14 shows the calculated results

for the parameter values corresponding to (A6-24). For comparison

purposes, we also show the functions Atl, At 2 (A6-25,26). From

this we can see the remarkable result..that for positive viscosities

p (not too large), the permissible time step At is considerably

smaller (by a factor of 1/2 to 1/3 here) than for the Type a

difference formulas. For small viscosities p , it even goes

below the otherwise conservative function At 2 . One would expect

that At would take on a minimum for pure convection, as was

assumed in [112], for example. Figure 15 showed that this

limiting value is only exceeded for viscosities p which are large

compared with/..
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-4 - ) (A6-29)

In this paper, however, the viscosity p is small and the Du Fort-

Frankel method is not suitable.

In the following we will show that this statement is

directly related to the three dimensionality, because it can be

proven that, for the one-dimensional case - o =

At does indeed take on a minimum for v 0.

In the one-dimensional case, the eigenvalues-of the matrix

G are: AC- 8 (AC- & -A

where

A 2 t >> / Vxl

Since we wish to show that At= 1~- is permissible, we set B=1.

The expression under the square root operator can be transformed

as follows:

(A C. - iS)t A-A - AI (C - - S 2 S C.-

Because of (A6-13) we have:

(A-fA )Z--A CC.- AS)"

The root can be taken and the eigenvalues have the following

values for B = 1

S (c2084
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/-- - -A -(A6-30)

Here B = 1 is permissible, i.e. At=axI//V/is a permissible time /160

step for arbitrary viscosity .

In the two-dimensional case, the eigenvalues are

where A = / A 2, A A.tA

AB i A'VX/ 8df IB 

If the time step,=[_ 4 Il4~7is to be permissible for

pure convection in this case as well, then we must have B = 1.

In contrast to the one-dimensional case, the expression under

the square root operator cannot be converted into a quadratic

form, and we cannot show that /,/-41. This is not a proof for

the fact that /.,/.4) and that the time step given above is too

large. This is proven by the numerical result.. For example

if we assume Al=1/2, A2=2, Bl=0.7, B2=0.3, we find that the

maximum magnitude of the eigenvalue for C 1-0.4, C2- 0.9 is

.l/ = 1.0875 . This example shows that the condition Jl1l. is

not always satisfied in the two-dimensional case for At =

[lVxl/x IV4I]- -I). Consequently this time step is not the minimum

of the permissible time steps for arbitrary viscosities i.
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Because of the small viscosities which occur for the simulation

of three-dimensional turbulent flows, it is not recommended

that the Du Fort-Frankel method be used.

A6.2. The Heuristic Nonlinear Stability Analysis according

to Hirt

Hirt [57] gave a heuristic derivation of the fact that non-

linear instabilities are based on truncation errors of the non-

linear terms, which are made up of products having the form

a (A)

The factor a(x) is a function of the velocities and of the

grid. For example,1see the example in (A5-7). In other words

the truncation errors appear as additional diffusion terms

with variable viscosities a(x). If a(x) is a sufficiently / 161

smooth function, it can be linearized and stability criteria

for this case can be derived as was done in A6.1. In this way

one obtains the results of the type

where i are numerical values. Hirt [57] derives such

criteria only for the two-dimensional one-step method. In this

paper we attempted to also derive stability criteria of this

type for nonlinear terms for the three-dimensional two-step

distant formulas used. We encountered the following problems:

a) The truncation errors differ depending on whether

the reference point of the Taylor series expansion is

the central location point for the time step no or

for the time step nl (according to Chapter 6.2.1).

We could not decide which was the "correct" reference

point, because no exact theory is available.
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b) The resulting factors a(x) which result are so complex,

that no practical stability criteria can be derived.

For these reasons we did not pursue the stability analysis

further, but only used the criteria which were derived from

the linearized theory as well as additional safety factors

discussed in Chapter A6.1.3.1. /162

APPENDIX

Consideration of Non-Equal Meshes in the Source Term of the

Fine Structure Energy Equation

After conclusion of the theory discussed in Chapters 1-8,

the first test calculations which had highly unequal meshes

X 4 AX/> X 3  (A7-1)

resulted in velocity fields which did not have the expected

random structure. Instead they were definitely regular. This

was expressed by the fact that the velocity fields only varied

as a function of xl with long wave, large amplitude oscillations.

They were almost constant as a function of x 2 and x 3, that is:

( , l/x4) > <(a > Y < (g>. A7-2

We found that this effect could be explained because of the

unequalness of the mesh edge lengths and its effect on the

energy equation. Therefore, we were able to remove it in a

corresponding way:

The source term P in (5 -44) is proportional to a difference
2

form of the square of the deformation velocity Dij , which con-

sists of 9 sum terms ( DC=va) ;(however, here we have ( /Dj3r4)Z=

( Drjr . Because of the unequal mesh edge lengths, the time
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averages of the sum terms are unequal. For locally isotropic

turbulence with the Kolmogorov spectrum, (.1< c ),c) >approximately

varies according to (A3-21) and approximately proportional to

S or -"'/ . Therefore, in the expression for the ratio

(A7-1) of the mesh edge lengths, for example D11 i is much smaller

than <D-> , i.e. a variation of the velocity field in the xl

direction results in a lower contribution to the source term P

than a variation in the x3 direction. Therefore, at all locations

where by chance there is a large gradient _ 3/dkgI , the energy vi

and therefore the viscosity p are large. At these points, the

velocity field is rapidly smooth again. However, this is not the

case for locations at which PI~'lis large, and this is why the

result (A7-2) is produced. In order to remove this effect, the

individual sum terms ( D1 Cj3 ) were multiplied by the weights

j (A7-3)

which can be calculated for locally isotropic turbulence with

the Kolmogorov spectrum using the programs given in Appendix 2. /163

After multiplying with these weights, the time average of all

the sum terms will be of the same size if this restriction is

observed. With the incorporation of this correction (A7-3), the

calculated velocity fields take on the expected random structure

which will be discussed in Chapter 10.

APPENDIX 8

Program tests for Laminar Flows

A8.1. Starting Flow

A starting flow is calculated which is obtained for

constant viscosity v (laminar) if a pressure gradient P =2

accelerates this fluid in the axial direction starting at the
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time t = 0, where u(t=0)=O. The solutions of the differencing

method are compared with the "exact" solutions calculated according

to the program ANLAUF [36] from series "expansion". The calculations

are carried out for an annulus with

R1=0.25, R2=1.25, v = 1

Three cases are considered:

Case a) at = 0.001, A r = 1/8 (=const)

Case b) At = 0.001,

Ar = f0.1, 0,1, 0.13, 0.17, 0.17, 0.13,0.1, 0.1

Case c) At = 0.00025, ar = 1/16 (=const)

Table 10 shows the deviations c between the exact solution and

the difference method solution at various times. 61 arelthe devia-

tions in the mesh at the inner wall (the largest deviations occur

there) and 62 are the deviations at r = (Rl+R2)/2. The data

are presented for 0<t 4 0.40. At the time t = 0.40 the

maximum acceleration only amounts to 0.062 instead of 2 at /
the beginning, and therefore at this time the solution has come

quite close to the stationary state.

From Table 10 it can be seen that by using non-equidistant

meshes, there is only a slight reduction of the error for very

small times at the wall mesh. However, this still leaves open

the possibility that a finer resolution for representing the

turbulent fields, which fluctuate greatIly in the vicinity of

the wall, could be advantageous.
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A8.2. Flow Between Rotating Cylinders

As a second laminar test problem we consider the stationary

flow between two concentric rotating cylinders, which rotate at

different rotation rates c 4 j(inside cylinder) and ~c' (outside).

For this case we have the exact solution [120]:

V 4- ( W2A
Y R2 -  R iA 1 1 _I R s (_r- 1,

Since the solution is in the center of the axial flow,

it was investigated at the same time as problem A8.1 was investi-

gated. For w= , r(+) is a linear function of the radius r

which is obtained exactly by numerical methods. In addition to

the azimuth diffusion terms, this example also tests the calcu-

lation of the pressure. Because of the centrifugal acceleration,

we have the pressure distributioni

-V

For =4L =L J we have

This solution was reproduced with a relative error of < 1%o for

KM=8 meshes in the radial direction using the difference method.

A8.3 Two-Dimensional Taylor-Green Vortex

For the initial conditions

" o. 0 Cox _ c(.X .s('14 ; * -U V =, c 'f , ) C, (, .z . 4 0=o

and if no external forces are present, we have the following

exact solution [94, 131, 102] for the case of periodic boundary

conditions:
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'14 = O. exp

U3 " 0

-p - [cot (2',U+ COJ C~x1)7jerp

This test problem was also used by Orszag [94] and Chorin [211.

Table 11 shows the errors of the velocity components for

A dX, AX - 1W P=OI. os I
Column I contains the errors of the numerical solution, which

was calculated using the described difference method. Column II

has the errors calculated by Orszag for the same problem. The

errors for the method used by Chorin were higher than those of

Orszag by several powers of ten. Column III shows the factor by

which the errors increase when the mesh size is multiplied by

four. Table 11 shows that the method used here is much more

accurate for small times than the method used by Orszag. The /166
reason for this is the implicit calculation of the pressure p

at the time n2 according to (6-4). Theoretically, for an

accuracy of order Atji, when dris multiplied by four, the error

should increase by a factor of 16. This is approximately verified

by Column III of Table 11 for the present difference method.
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TABLE 1. PREVIOUS DATA FOR a1 - a8 [115,113,91,116] /1861

(For comparison purposes, the table also contains the

notation used in the various papers)

Term, a i  Rotta Rodi-Spalding Ng-Spalding Runchal-

(1972) (1970) (1972) Spalding(1972)

(V14'v a, k 0.56 C 1. - 1. c 0.20

0.055, C 0.1 C 0.31

E'), Dissipation a2  c 0,18 CD 0.0 0.1 0.31

1 0.5 . 0.133
(a), Diffusion a 3  0,38 C,/W 1. CA 0.133

L-Production a4 1.2 CB 1. C 0.84 -
L-Production f P i

a5 - 0. - 0. -

0.667 0.634****)
L-Sink I a6 CL 0.667 /K D  6 CCD X -

0.8 0.723

a7 * k L ( 1. 1/1, 0.5 -

L-Diffusion ' k

a 8  **) 1 3.33 //04 1.67 -
L (1+CkL

) The values were derived from the data of Wieghardt [991.
a a1 2

**) One of the constants 5' a7' a8 follows from-a4-2k a 5 +a6-k aa 8 /a 2
0; k=o.4 ,

***) First number for free jet from a rectangular nozzle;

second for circular nozzle.

a****) X =1C+ C+ (L/i17, C, 0. 05, C = .22. , =
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TABLE 2. ACCORDING TO Ng-SPALDING (1972): /1871

(Variation of the calculated target values

for variation of one constant each by 5% [91].)

-I

Varied constant Average variation of the
target values in percent

L-Production a4  4.9

(E')- Dissipation a2  3.9

L-Sink a2 * a6  3.1

Var. of the L-Sink q 1.2
with location z.1 Cw  0.7

L-Diffusion a7 * a8  0.5

a7  0.4

(E' - Diffusion a3  0.4
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TABLE 3 *J /188j

Kolmogorov - constant a

a)_ Experimental findings

Standard Average
Authorsi Ref. YeariI Flow typel deantinl value"Ideviationj valuel

Grant et al 46 1962 Tidal flow 1,22 - 1,81 1,44

Gibson 47 1963 Free jet } 1,57 - 1,62 1,6o

Pond et al. o01 1963 Wind over waves•j 10% 1,41

Comte-Bellot 18 1965 Flat plate flow 1,55

Paquin,Pond lo6 1971 Wind + 0,28 1,58

Wind pver the
Wyngaard, Pao 142 1971 + 0,06 1,7

ground: height
5,66 - 22,6

Boston, Burling 17 1972 " 4 m + 0.06 1,56

b) Theoretical predictions

Kraichnan 69 1965 1- 1,77

Kraichnan 70o 1966 - - 1,5

c) Recommendationl

Pao 103 1965 1 ,5

Lilly 8o 1966 1,41

Rotta 115 1972 1,44

This paper - 1,5

* Translator's note: Commas in numbers represent decimal points. I
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FUNCTION OI(AlvA2tA3vXS1,XS2I Y 3(131- CA3-T31*R**DR3*F
r\) COMMON/CWORK/ Yl(l100IY2(l00DY3(100),ZlEIOOIZ21100),Z311001 3 T3-T3*H3

0) CCMMON/NNNNNN/NN CALL QSF(H3,Y3t13,N3)
LOGICAL FIRST

DR-I./3.GCTO 22
NDAMl ,2)N 21 13lN31= DRt940*A3**DP83

N=AMX1 1. A2)*N.22 YI(I1I) Z3(N3)*(AI-ABSfTI)I
N2=P4AX0(1oMINO(99, 2*N)I I=1N

N=AMAR1 (l.,A3)*NN CI L QSF(1HI Y12,I

N3=MAXO( 1O,M1NCl( 99,NII CA2.LL (N )/(A1*AltI*A3*A

H2=2. *A2/N2 RETURN N)(A*A*3*3

H3=A3/N3 PEDR

N2.N3+1 FUNCTION D3(AI,A2 ,A31xsIXS2)
FIST3I=N3I)G.+1-0 CCMiNON/CWORK/ YI(IAO)tY2(lOOI,Y3(1OOIZ(1OO21OOI,Z31(%O)
FT= -A 2T..E1O COFP!ON/NI4NNNN/NN M t-

DO 2 12=1,N2 flR3/3. H

IF(FIRSTIGUTC15 nC)0.3 H~

IF(AbS(XS2-T2).GT.I.E-I~lGOTO5 DR940=R./40. 0 4

Y?(12)=(A2-ABS(T2)1 *'.225*A3**2.6666666666EO N1=MAXCO(1C,MINO( 99,IFI)((NN*AI4AXI( l.,AI~I II.

GOTO 4 N2=AOI;.I,MIN0t9qIFIXENN*A'h~Ill.,A2fhII
-CONTINUE N3=MAXO(1O,MINO(99,IFIX(NN*AMAXl(1.,A3l1fl
xst2.XSI*XSI HI =AI /NI zo0
X2T2=( XS2-T2 P**2 N1=NlI +1 :
AT2=42-ABS( T2) H2=A?/NZ -
T 3 -0 N2=N2+1C):
DO 3 13=1,N3 H3=A3/N3 Pip >r
T3T3=T3*13 N ~
R=XS12+X2T24-T3T3 TI -AI12. 3

DO I IIlINl H H )
Y31I3)=(A3-T3)*AT2*IR**DRt)*(i XSZ/14.*RI (DA22

3 T3-T3+H3 R2 A2/2.S1**

CALL QSF(H39Y3,139N3) =T+S112! t

Y2(12)-Z31N +31 FXqI1 I P 1

CONTINUE T3=0 2, 0~lN
2 T2-T2+H2 R2.RI.( T24-XS21**2 c)q

CALL QSF(H2,Y2,Z2,N21 IF(R2.LT.I.E-101 GOTO 21 3:
01.2.*12(N21 /(A2*A2*A3*A3) DO 3 13-1,N3z
RETURN m=2T31

NDIN 02(AI,A2,A3,XSI,XS2I IF(RG.1-I) H C')SI(4*
COPMNON/CW0RK/ YI100O),Y2(10"),Y3(loo),ll(1001,Z2(100),Z3(1COI Y34131=(A3-T31*R**DR3*F 30
COP4MON/NNNNNN/NN 3 T3-T3.H3
DP3=1./3. CALL QSFtH3,Y3,Z3,N3)
DR03-B. /3. Y2(12)=13(N3) 1 z
D
9
4n=27./1C.9II(NA~111*) GOTO 2

NI=MAO(IOMINC999tl~tfN*AMX1(1o~tf2)1I21 Y2(12)=DR940?*A3**DR83 tl
N3=?AX0(10,MINO(99,IFIX(NN*AMAX1E1.,A3) )) 2 T2=r2.H2 cn
HI-2.*AI/NI CALL QSF(H2,Y?4Z2,N2)
NI=NI +1 YlfI I I2(N2) I
I13=A3/N3 I T1-Tl+Hl
N3=N3+1 CMtL QSF(HItYIvZlNI)
TI- Al 03=2.*ZI(NiI/A3
DO I 11101 RETURN
Rl=(TI*XSI I**2+XS2*XS2 END

Tn.FUNCT ION D4 (Al,A2 ,A3*XSI1S21
IF(RI.LT.I.E-I0)GOTO 21 OHNwRKYllNl21o),3lOoll)9iOlZ300

00 313-,N3CCPMMON/NNNNNN/NN

F= IT33 = XSI*XS2

IF(R.GT.I.E-1l'IF-1.- (XSI*TlI**2/(4.*Rl R *R *
11 IN

Continued on next page



TABLE 4 (CONTINUED)
IFIR. LI. 1.E-1O)G0T0999 Y3( 13 I= A*(A3-T31 48*XS2/(B2*T3*T3)**0R3
OP3 . 3?3 3+HNI=MAXO(1),DINC(99,IFIX(NN*AMAXIEI.,Al)3lI CAZ T3=T3 H3,vZvl
N2=MAXO(1oPiINOC99,1FIX(NN*AMAXIl1.,A2) ) AL Yl SF(H-3,3,l,
N43=MAXOIX'3,MI1NO(99,IFIX(NN*ANAXI(1..A311b I TI=T]*Hl

NIsAI1*1 CALL QSF(H1,Y1,Zl,NI)
H2.AN2 99S 0

5
5-.5*ZI(Nl)/IIAI*A3*A3)

H2-A2N2 RETURN

H3.A3/N3EN
N3'N3+1
TI.-O0.5*Hl
00 1 Jl=1,NI
T2-.5*H2
P I-IT I XSI I
P12-RI*Rl
00 2 12=1,N2
T3-0l
RZ2-12 X S2
R1I3-R 12+R 2*Ft2
R2.'R1*R2
00 3 13-1,N3
R=R 13+T3*T3
V3413)-(R2 /P**0R3)*(A3-T3$

3 T3-T3+H3
CALL OSF(H3tY3,Z3#N3)
V 21I12 1 - Z 3 N31I

2 12=T?+H2
CALL QSFIH2,Y2,Z2,N2)
YIfl l=2(NZI

I TI=Tl+HI
CALL QSF(HL,YI,ll,Nl)

999 CONTINUE
D4=-0.5*Z I (N I I/A3
RETURN
END
f-UNCTI0N D51AI,A,3Sx2
CCMMON/CWORK/ Y1Ifo 1.2(l 001,Y3IlODIZI(10I,12(lOO),Z3(100b
COMMON/NNNNNN/NN
DATA 0R3/0.6666667/
NI=MAXOIIO,MINO(99,IFIXINN*AMAZ1I1.,AlI IiI

C XSI-. 5*Al
C XS2=A2

ZINI 3-0.
P. XS1*X S2
R-R*P
IFER.LT.I.E- 10) GOTO 999
N3-MAXOIIO.M INOI 99.IF IX INN*ASIA~l. £33 II)
Hl-' ?.*AlIN.
N1-NI+l
H3- A3/N3
N 3-N 3 1
TI.-AI
XS2Q.11S2.i(SZ
00 1 II-I,Nl

A- AI-ABSITII

LA B?.BI*4XSg

DO 3 13-1,N3
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TABLE 6. COMPARISON BETWEEN EXACT AND APPROXIMATE SOLUTION OF THE\

INTEGRALS\ k 1, 2, .... 5

/192
EXAKTE 

WERTE FUER 
NN= 

50

DXl DX2 OX3 XS1 XS2 01 D2 D3 D4 DS

1.000 1.000 1.000 .0 .0 .629273 .550611 .610374 .0 .0

NAEMERUNGSWERTE- *629293 .550591 *610363 .0 .0

1.250 .8000 1.000 " .0 .0 .587q34 .583699 .601811 .0 .0

NAEHERUNGSWERTE- *588521 *565463 *584646 .0 .0

.8000 1.250 1.000 .0 .0 .681659 .524992 .635318 .0 .0

NAEHERUNGSWERTE *582437 .514422 .619722 .0 .0

2.000 .8000 .6250 .0 .0 *502878 .617508 *599134 .0 .0

NAEHERUNGSWERTe8 .4863)3 .512840 .502591 .0 .0

.8000 2.000 .6250 .0 .0 .779179 .429627 .690003 .0 .0

NAEHERUNGSbERTE *761372 .487552 .667991 .0 .0

1.000 1.000 1.000 1.000 .0 .884936 .819854 .857132 .0 .0

NAEHERUNGSWERTE- .90275) .824927 .874311 f *f0

1.000 1.000 1.000 .0 1.000 1.74151 1.06414 1.05290 .0 .0

NAEHERUNGSWERTE. 1.0621) 1.04672 1.05389 .0 .0

1.000 1.000 1.000 2.000 .0 1.2525) 1.21832 1.23629 .0 .0

NAEHERUNGSWERTE. 1.26963 1.20377 1.24406 .0 .0

1.000 1.000 1.000 .0 2.000 1.63253 1.61436 1.60853 , ,0

NAEHERUNGSWERTE- 1.63334 1.59448 1.60383 .0 *.

1.000 1.000 1.000 3.000 .0 1.59738 1.57613 1.58706 .0 .0

NAEHERUNGSWERTE. 1.6)417 1.56198 1.58017 e9 .0

1.000 1.000 1.000 .0 3.000 2.18869 2.09591 2.09238 .0 *

NAIHFkUNGSWERT 2.38342 2.07891 2.08412 .0 .0

1.000 1.000 1.000 .5000 1.003 1.37322 1.08750 1.07857 -. 156930 -*845673E-01

NAIHERUNGSWERTE- 1.34955 1.04511 1.05133 -. 8769685-01 -.845673E-01

1.000 1.000 1.000 2.000 1.009 1.41)16 1.39668 1.40314 -. 217366 -. 16980S

NAEHERUNGSWERT . 1.35439 1.31730 1.32711 -.214470 -.165887

4.000 .5000 .5000 4.000 .0 1.99534 1.85482 1.87729 .0 o.

NAEHERUNGSWERTI- 1.98134 1.91877 1*88864 .fn .

.5000 4.000 .5000 4.000 .0 2.37186 1.89255 1.99081 .0 .0

NAEHERUNGSWERT. 2.13323 1.88756 1.99329 .0 .0

4.000 .5000 .5000 2.000 4.030 2.58322 2.62638 2.60454 -.387563 -. 226153

NAEMHEPUNGSWERTE- 2.5229 2.46739 2.48395 -.389743 -. 226165

.5000 4.000 .5000 1.000 4.000 2.49312 2.53617 2.51448 -.167111 -.150400

NAEHERUN GSWERT E- 2.)3211 2.51128 2.52312 -.170391 -.150400

1.000 1.000 1.000 .5000 .5003 .822632 .810274 .811418 -. 137926 -. 642200E-01

NAEHERUNGSWERTEr .*21765 .796553 .804990 -. 917400E-01 -. 687301E-31

.1526E-04 .5004 .1309E06 7TS39 .5671 1163.37 1160.08 1160.12 -. 887003E-03 -. 778719E-01

NAEHERUNGSWERTE 11s*.12 1160.45 1160.30 -. 2094341-01 -. 483762E-33

1.179 1.495 .5672 .4402E-01 .5547E-01 .660351 .484572 .620180 -. 909008E-01 -. 105170E-02

NAEMERUNGSWERT * .5273 .548969 .631080 -. 497372E-02 -.21t453E-3

.5051 .8858 2.235 .8165E-01 .5208 .976992 .962490 o966936 -. 556944E-01 -.122855E-01

NAEHERUNGSWERTE. .978648 1.03323 .953560 -.651390E-02 -.134593F-01

1.985 .8386E-01 6.006 .5722 .3971E-01 1.53633 1.58315 1.55947 -.101013E-01 -.225960E-02

NAEKERUNGSWERT E 1.32613 T.45353 1. 5411 -. 209490-02 -. 276192-52

1.174 1.603 .5316 68829 .7943 1.04397 1.00474 1.01253 -.194115 -.117807

NAEHERUNGSWERTE 1.30459 .961849 .977707 -. 200665 -. 116638

1.361 1.526 .4815 .9325E-01 .7213 .849997 ,869887 .845786 -.127162 -.140615E-31

NAEHERUNGSUERTE ,91177) 887366 .891261 -.277261E-01 -.176798E- 1

.4891 1.425 1.435 .4391 .2948 .873158 .750833 .819140 -. 106793 -. 483967E-01

NAEHERUNGSWERT E .57484 .751760 791416 -. 444264E-01 -.463789E-01

1.422 1.838 .3825 .9645 .9940 1.14938 1.12704 1.12505 -.215942 -.129191

NAEHERUNGSWERTE 1.11657 1.07605 1.08718 -.232628 -.129708

.1895 1.458 3.617 .1929 .2957F-01 1.23135 1.07653 1.15612 -.348292E-01 -. 265150E-02

NAEHERUNGSMERTE 1.21)71 .983607 1.18651 -.6211715-03 -.159498E-3e

.8316 .1272 9.450 .6303 .8E47 2.16542 2.16995 2.16782 -.674606E-0n -. 4360021-31

NAEMERUNGSWERTIE 2.13527 2.13849 2.15344 -. 355640E-01 -. 47302E-31

1.474 1.784 .3804 .9127 .2352 .925362 .761321 .860252 -.163858 -.465344E-01

NAEHEPUNGSUERTE- .934152 .814433 .857378 -. 1484? -. 452523E-31

.2496 1.481 2.706 .4112 .8112 1.21811 1.18160 1.19412 -. 862264E-01 -.628895E-01

NAEMERUNGSWERTE 1.22267 1.14885 1.16759 - 4 26 54~-01 -. 599543E-51

* Exact values for NN = 50. 233
** Approximate values



TABLE 7. FORTRAN SUBPROGRAMS D11, D12, D13, D14 and FEDI ACCORDING TO CHAPTER A 2.6.

FUNCTION O llXC,2X3l FL.NCTION D1211(HNI,72'"30
EXTERNAL D1111,01112 01211--4 .*(01( H ,N2,N3,.5*H1,O.).01(H1,N2,H3,1.5*Hl,0.III(H1*N1)
Di1=SDIJ(X1,X2,X3vOll11 .0112 RETURN
RETURN END
END FUNCTION D12I2(M1qH29M31
FUNCTION OI2EXltX2,X3) D1212-- (O3EN1.N2,H3,E.0.*2)D03EN1,2,H3,.,.5H2I/IH2NH2I
EXTERNAL 01211,01212 1 +2.*D5(H1,H2,H3,.5*NIHDIINI*N2)
012-SDIJlXIX2,X3, 01211,01212) RE TURN
RETURN END
END FLNCT ION 01311 (HIN2,H3)
FUNCT ION - 13 (XI tX2, X3) DI 311=DlII1IHIwH , H3)
EXTEkNAL 01311,01312 RETURN
D13-SDIJ(Xl,X2.X3,01311901312) EIVD
RETURN FUNCTION 01312(HIH2,H31
END O131?=-(01(HlN2,H3,O.,O.)-O1EHlH2,H3,O.,H2))/(N2*H2I
FUNCTION -D14(XI,X2,X3) I -1o1(H2,N1,H3,O.,D. )-Dl (H2,NXN3,N2,O. I)/(HI*HI)
EXTERNAL D1411,DI4l2 2 +4.*'D4(H1, H2,H3, .5*141, .5*12)1(11*142)
DI'-SOIJlXIX2,K3, 01411,01412) RE TURN
R ETUR N END
END FLNCT ION D14111H1vH2vH43)
FUNCTION SOIJIXI ,XZ, X3,/FII//Fl2/I D1411=-(14.*DI (141,li2H3,'1.,0.I-17.*O1(HPt,3,Nl,0.I
IF(ABS(1.-Hl).ABSI1.-H2)+ABS(.-43I *LT.I.E-4) GOTO 2 1 +2.*D1(H1,H2,132.*HlO.)+DIEHlH2.133.*N10.))(.HINHI
S.D. 21
DO I 1- 1,3 REFTURN
F-1. END
00 1 J-1,3 FLNCTION DI412(N1,142,13)

1 F-2. I .01 (M1,H2,H3,rl.*2.*42 ).D1(HIN2143,N1,2.*42)
SDIJ=S 2 -O1(HlH2,H3,N1,Ol.))/(8.*H2*H21
RETURN 3 -(7.*Dl(H2,H,M3tfl.,0.)-8 *DI(l29HI#H!90.v4Il

2 SOIJ. 3.*OIJIX1,X2,X3,1,FiI2),6.*0)IJ(X1,X2,K3,1,2,FI1I1 +01(1429,H13,0.,2.*HlI),D1(12,H1 ,13,N2,2.*HlI
RETURN S-fll(12,HI143,42,D.I) /(8.*H1*Hl)
END 6 +ll5.*D4IHl ,H2,43,.5*HI ,.5*H42)-D4(Hl142143, .5*Hl,.5*H2I
FUNCTION DIJNt l,12t,13,,JO11,012) 7 -D4.lHI ,H2,143,. 5*14,1.5*142)-D4(HI1,12,143,1.5*Hl1 .. *142))
DIMENSION HH1(31,1(3) 8 /(4.*141*H2)
141(1)-HI RETURN
HH!421=142 END
HHll31-143 WUNCTION FEDIEXlX2,X31
IF(I.EQ.J) GOTO 201 EXTERNAL FEOII ,FEDI2
H(l)-HHII) FEDI - SDIJIXIX2,X3,FEDII,FED121
14(21=141(J) RETURN
14(3)-H1416-1-J) END
DIJ- D12(H(IlfH(21,H(3)) FUNCTION FEO1II(Hl,H2143)
RETURN FED11=SQRT(H12*13*ENERG2(143,H3)I*0121(H,14243I

200 JJ=MOD(I.3141 RETURN
tH, I 1-HH(1I) END
H121-HHIJJ) FUNCTION FED121FftH2wH3)
HI 3)-HH16-I--JJ) FED12-.5*( SQRTIH2*143*ENERG2IN21431 )*01212(HlN2143I
OliJ D111(1),Nq(21,N(l)) I SQRTIHI*143*FNERG2(H1,H3))*D1212("2,NIN3)I
RE TURN RETURN
END END
FUNCTION 011111141,12tM31
ni11i1-4.*(D1(H1,142,H3,O.,0.1-1I(H1,H2,N3,Hl,O.I)/(M1*lI
RETURN
END
FUNCTION DII1Z(N1,H2,N3)
D1lI2=--.*(02(HlH,143,O.0. O)-02(H1.142,13,0.,N2)I/(H242*1

* 4.*04(H1.N2,143,.5*1, .5*H2I/(H1*N2IRE TURN-I'



TABLE 8. COEFFICIENTS OF THE VECTORS Al, A2 /1941

ACCORDING TO (A6-9)

Al Type a) (Jump)l Type b) (Euler)l Type c (DuFort-Frankel)!

Al(2) -t_ _ XtI .tt 2 Vx .-y

A1(5) _t .24k ( v 2 . )
AxrAXI Aq A Xr

A1(6) At f at 2v 1 y AL *-- v1 y'

Al(7) At atv V

r y F_ -a At ,6 2( , ., ,

A1(5) A " t vi at A""t" v 1 / 4

A-r A-V dr '4 -f

Continued on next page
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TABLE 8 (CONTINUED)

A2 Type a) (Jump) Type b) (Euller) Type c)DuFort-Frankel

A2(1) . 4

A2(2) a O

A2(3) O

A2(4) O o

A2(5) _ t_#
h,L 0 0

A2(6) 2A6~u(- z - 0

A2(7) +. 0 0
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TABLE 9. COEFFICIENTS OF THE AMPLIFICATION MATRIX G /1951
ACCORDING TO (A6-16)

Type a) (Jump)

A = - V + 4

2A a 2 tj

.42jpir 2 , - rg

842 = S3 5i s

Type b) (Euller)

A, =6tjUc,-l-/ UI( ) (c,-)( T Alp tii

-Jd i -/ r 4'i 7

S =2- .- v- - +3 L S3
A Ax -*ap a- r

A =  = 0

Type c) (DuFort-Frankel)

(A + x4AAA (4d) 4-0 i

( Vx s- sVV-- - ) j

(4 4 j) + 4 "fdy rL atL
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TABLE 10. ERRORS IN THE DIFFERENCING METHOD FOR LAMINAR INCIDENT FLOW
c

E " 1000 (Wall mesh) E2- 1000 (Center)

Fall: a) b) c) a). b) 0)

r = 1/8 ar o 1/8 r =1/16 A r =1/8 A4rw 1/ 8  A r = 1/16

= const #const = const = const + const = cons

t

o.o04 - 2.36 - 2.ol - 0.72 - 0.24 - 0.39 - 0.06

0.o8 - 2.24 - 2.22 - o.68 - 0.47 - 0.69 - 0.13,,

o.12 - 2.o6 - 2.31 - 0.63 - 0.48 - 0o.93 - o.12

0.16 - 1.89 - 2.34 - 0.6o - 0.25 - 0.86 - 0.08

0.2o - 1.74 - 2.34 ,- 0.57 - o.11 - 0.92 - 0.01

0.24 - 1.61 - 2.32 - 0.55 + o.21 - 0.63 + 0.02

o.4o - 1.o - 2.21 - 0.49 + 0.97 + 0.25 + o.23



TABLE 11. TEST PROBLEM TAYLOR-GREEN VORTICES

I II III

Time step Error of the Error of the Factor of error

enlargent when
method used method used by enlargemen

-l hcreasing mesh
here *105 Orszag *105 z

here _ size by _four.

1 0.107 2.1 26

3 4.26 6.1 19

5 8.29 10 16

7 12.3 14 14

9 16.1 17 13

20 37 37 12

R\
kO



FULLLUUT k ~FOLDOUT 
F

TABLE 12. SPECIFICATION CF CASES KI - K4, Z1 - 24. /198

K1 K2 K) K4 Zi Z2 Z3 Z4

R2/R1 1 1 1 1 5 5 5 5

a4, /x 0.125 0.125 0.0625 0.0625 0.25 0.25 0.125 0.125

Ax .,a 0.125 0.125 0.0625 0.0625 -r/16 iF/16 T/32 7r/32

0.0625 0.0625 0.0625 0.018 0.0625 0.0625 0.0625 0.042
xa 0.0625 0.0625 0.0625 0.042 o4

XisX 2 4 4 4 2 4 4 4

X2, 1 2 2 2 Tr 21T 27 217

IM 16 32 64 64 8 16 32 32

JM 8 16 32 32 16 32 64 64

KM 16 16 16 32 16 16 16 32

IM.JM.KM 2048 8192 32768 65536 2048 8192 32768 65536

N 64 64 32 32 64 64 32 32

t 103  3.13 2.81 1.46 1-.13 4.6o 3.88 1,43 1.o4

Probleml 5.6 3.8 0.9 1.1 7.4 12.3 1.4 1.8

t ime

Time steps 1440 14o8 736 916 1664 3200 1088 1488

M(esh 35' 2h30' 6h 9h 40' 5h30' Th40' 14h

computation 35
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TABLE 13. CONSTANT CASE PARAMETERS

Symbol Def. Eq. Value /199

Re (1 - 13) 10000

Rem (1 - 14) 300000

Re (5 - 90) 2100
mkrit

.(4 - 4) 1.5

C7  (5 - 65) 0.3

010 (5 - 87) 0.01

011 (7- 15) 0.2

E1,2 (7 - 8) 88000

Aw 1,2 (5-88) 4

Plate 1i
Annulus 0.871

5 3Plate 31
Annulus' 6.jrl

4' (5 -55) 1.1

D2  (5 - 46) 3
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TABLE 14. CALCULATION TIMES PER TIME STEP /2001

ON THE IBM 370/165

Contril - K1 K2 K3 K4
'butions! Zi Z2 Z3 Z4

see % see % sec % see N

Energy 1.9 ~1 8.5 34 17.6 33.6

S3.7 60 14.1 56.5 29.8 57

Ap0.54 9 2.33 9.5 4.9 9.4

Totail 1.4 100 6.1 100 24.9 100 52.3 100
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TABLE 15. COMPARISON OF MAXIMUM VELOCITIES /2011

ZWc>max R2/R1 1 5. Re m  Reference

31.8 1 1 Clark (22]

31.5 1 4.6 Comte-Bellot [18]

27.7 1 2.4

27 1 1 Laufer [76]

30.1 1 QQ Deardorff [29]

28.89 1 3 K1

31.3 1 3 K2

27.4 1 3 K3

27.6 1 3 K4

28.0 5 3 21

28.3 5 3 Z2

27.6 5 3 z3

27.9 5 3 z4
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TABLE 16. COMPARISON OF THE DIFFERENCES BETWEEN /202

THE MAXIMUM AND MINIMUM VELOCITY

axR2/R1 Rem* 105 Reference

2.32 1 1 Clark [22]

2.70 1 3 Barthels (11]

2.68 5 3

5 1 oo Deardorff [29]

3.19 1 3 K1

3.17 1 3 K2

2.60 1 3 K3

2.87 1 3 K

2.75 5 3 zl

2.52 5 3 Z2

2.74 5 3 Z3

3.155 3 z4
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Plate flow /2V131

<U> 
U V /U

D U3w

Annulus flow

R2 p

¢=2rT

Figure 1. Channel geometries considered
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/2041

102-

Thickness of the laminar sublayer/D

Kolmogorov-Length/D

-103

Dimensionless

length -7/8
(vRem

N Re-~11/ 16

10-

Rem
10- s

10' 10s  106 107

Figure 2. Estimation of required resolution
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/205

Core

storage /

-2MK - 40 - 85

1 IBM 370/165

1MK / -

Static

Dynamic/
-100K /

/ KM
Number of

/ meshes

10 100

Figure 3. Required storage capacity as a function of meshes
in one direction
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"/206

-Id Computation time/

(IBM 370/165)

-10h for a dimensionless

time unit' At = D/uo

2h40'
-2h 32

-h

c KM'
-30'

-10' 10'
16

KM

Number of

meshes in

one direction

10 50 100
I II

Figure 4. Required computation time as a function of number of

meshes in one direction
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D=1 
/207

t[ x1, _ 1 z - .m, n

1.1I10 mnx X .Vl,m~n

Pe, m, n 2

-1 x

2 n-I n n1 I KM

-n X3 , r

MFg X2 5 O mm.g(sg nm+1

E Xr-
m- 1 <] rm,nI

P, m, n 2

Figure 5. Overlapping mesh grid (staggered grid)
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( E(k)

Dependent Independent of type of
turbulence production /

2/3-5/3
N <E> k

Turbulence

balls Region determined k-7 Region determined

qarrying energy by inertia: forces by viscosity forces

I I. k
kmo Lo K [1/length]I

- Region resolved by mesh grid --4

Figure 6. Principle variation of the energy spectrum of isotropic turbulence at
large Reynolds numbers
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/209

COMPARISON OF -e AND ua ' 5PECTRA

3o _ _ Laufer (1950 )

Rem, = 61 600

KM= 2 nD

Sn .n D=0,12 7 m
-(') U= 15m/s
15

i F- (n)

n2. Ell (n)

0 o

0 500oo 1000 o 2000 2500 3000 .500 4000 4500 5000
n (sec')

20 30 40 50 KM
I I I I

Figure 7. Estimation of required mesh number KM for allowing
the local isotropic assumption, according to measurements of
Laufer [77]
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KM /210
3 30 100 300

10'

E22 (kl)

103

10'

10

0o  Channel center_

10' Rem= 240 000

O Measurement values of[ Es? (kl)

e' Measurement values ofl E22 (kt)
x3= 0,5

-- Cllt E ed fromk)

10-' I "1 I I " l!,

10-  10' 100 10' k, (cm 1

Figure 8. Estimation of required mesh number KM for reliability
of local isotropic assumption according to measured value of
Comte-Bellot [18] for the channel center (X 3=0.5)

252



KM /2113 30 100 300 i .
105

100 Rem 240 000

O Measured values of E33(k)x3=0,21

e Measured values ofIE22(k)x0,235 -_

xI= H225

0 ' II I 11 11111

1 10' 100 10' k (cm-

Figure 9. Estimation of required mesh number KM for reliability of
local isotropic assumption, according to measured values of

Comte-Bellot 18 for x1/
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KM
, 30 300 1000--

/212

- --- - + -H--- - -

to' E22. ('k)

Wall vicinity

X3/D 0.02

10-0 Rem= 240000

0 Measured values of 33 (k x3= 0,02(

* Measured values of E22 (kl) X3= 0,00

iCalculated fro X018

o2 Eit(ki) -

10o 10- 100 10' k (cm-) 1

Figure 10. Estimation of required mesh number KM for reliability
of local isotropic assumption, according to measured values of
Comte-Bellot [18] near the wall (x3=0.02)
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3 30 300 '
/2131

10-

o e- m E k ) 11 
-

I II

370
in I ,i

o Rem = 114000 x3 = 0,225

a Rem - 240000 X3= 0,225

e Rem = 460000 x3= 0,22

10-'

10"2 10-1 700 10' k, (cm-') 102

Figure 11. The range of validity of the Kolmogorov spectrum
based on measurements of Comte-Bellot [18] for x3= 1 /4
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FOLDOUT FRA. ! .uDOUT FRAME

//214

9*60E-03-

SAt
8*5a-03 - tk

V, 10 At Type a)I

7-47E-03 -

Ax = 0,125
6-40E-03-

rAp = 0,05
At

Ar = 0,05
5-33E-03 r = o

AVt2  p = Vx/10

4-27E-o03 - Vr = VX/10

6YV, = 0

V =30

2 -3E-03 - V =50

i.07E-03- -

I I I I I I I I I I I I

3-20E-02 6-40E-02 9-60E-02 i-2BE-Oi i.60E-Oi iS92E-Oi 2-24E-0i 2.5GE-0i 2*-E-0i 3-20E-0i 3-SEE-0i 3-84E-Oi

Figure 12. Allowable time interval At as a function of viscosity p where convection velocity V is
the parameter, for Type a) difference formulas x

256



FoLDOUT FRAMB FOLDOUT FRA 15

8-53E-03-

7.47E-03 - Type b)

At

At

G.40E-03 -

At2
5.33E-03

4.Z7E-03--

3OE-03--

.30

07E-03 I t

I I I I t I
3-zOE-0? 6-40E-0? 3-96E-0 i-jE-Oi i-GOE-01 i- SE-i 2-e4E-01 2-SE-O 2-E-0Oi 3-OE-01 3- 5E-01 384E-01

Figure 13. Allowable time interval At as 4 function of viscosity p where convection velocity

V is the parameter, for Type b) (other pgra'eters as in Figure 12)
X
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( JOLDOU FP

9*60E-03-

853E-03-

fAt F Type c) small-viscosities I

7.47E-03 -

6-40E-03 -

At

5 -33E-03

4*27E-03

10

3-20E-03-

2-i-03

i -07E-03

Vx- C.

3-20E-02 -.40E-02 9- 6E-02 i-28E-0i i60E-0i i-92E-0i 2-24E-0i 2-56E-Oi 2-8E-0i 3-20E-0i 3-52E-0i 3-84E-Oi

Figure 14. Allowable time interval At as a function of viscosity 'p where convection velocity V
is the parameter, for Type c) (DuFort-Frankel) an small viscosities (other parameters as inx
Figure 12)
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3*-S-03-

3-20E-03-

2-B4E-03 -

Type c), large viscosities vI
2-4E-03

Linear interpolation I

7FE-03 -

V. 30
1-42E-03-

i-07E-03-

7-1.E-04-

3*5E-04-

5o0EOi 112ECeO2 i-EEE0 2-4Eo2 *BOEG02 3-3EE02 3- 9E2 4-4 02 S-04EO2 5-CE02 64-1GEO 6-72EE

Figure 15. Allowable time interval At as a function of viscosity
p for Type c) difference formulas (DuFort-Frankel) and largel
viscosities (other parameters as in J Figure 12)1
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Figure 16. Initial values of the velocity field (U- - ) in the x3-xl plane and

corresponding energy spectra
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Figure "17. Turbulence velocity fie'ld in an annulus": -

261



/220

Z4

So.sast ,s
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* o.eIr o0

0e 0 .11) Ot

Figure 18. Kinetic energy of the fine structure, - and
pressure p in annulus

(Continued on next page)

262



/I \I i : t Y +\ ' "°'

*-0.,,00 Cl

I s 0.2C9 Cl

. 0.0210 Cl

* 0.0530 CI

4 * 0.0010 01

Figure 18 (Continued from premedling page)
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Figure 19. Turbulent velocity field k 1-<-Y>), kinetic energy of fine structure

and pressure p in the x3-x 1 plane of a plate channel
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position functions time functions-

Figure 21. Turbulent fluctuations of the coarse structure

Eparison (k) corresponding spatia and tempoa energy
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Spectra of thei Spectra of the ki
position functionsJ time functions

Figure 21. Turbulent fluctuations of the coarse structure
as a function of time t at a location of r=0.844, and com-
parison of corresponding spatial and tempo'al energy
spectra
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LOG (Ku

Figure 22. Energy spectra of the velocity fluctuations as a
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Translator's note: Figure 25 missing from German text.
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